期刊文献+

采用MSBN多智能体协同推理的智能农业车辆环境识别 被引量:1

Environment recognition of intelligent agricultural vehicles based on MSBN and multi-agent coordinative inference
下载PDF
导出
摘要 为了解决智能农业车辆对所处复杂农田环境的识别信度定量分析困难的问题,提出了基于多连片贝叶斯网(MSBN)多智能体协同推理的目标识别算法.该方法把多智能体图像采集系统的局部信息表征在MSBN模型中,在观测不完备条件下,虽然单个智能体仅拥有目标的局部观测信息,但利用重叠子域信息的更新可以进行子网间消息的传播.利用MSBN局部推理和子网间信度通信的全局推理对多源信息进行融合,以提高识别性能.实验结果表明,与传统神经网络或BN方法相比,基于MSBN目标识别算法有效地对多源信息进行了补充,可以提高农业车辆在复杂环境进行识别的准确性. In order to solve the problem existing in the agricultural environment recognition of intelligent vehicles , due to the difficulty of conducting quantitative analysis of the reliability of such recognition , a target recognition al-gorithm for multi-agent cooperative inference based on the multiply sectioned Bayesian network ( MSBN) has been proposed.This method characterizes local information of the multi-agent image acquiring system with MSBN model . In the circumstance of incomplete observations , although each single agent may only capture some local observation information from the target , the message propagation among subnets can be achieved by information update in the o -verlapping sub-domains.By combining the local inference and global inference of reliability communication between subnets in MSBN , the multi-source information was merged to enhance recognition performance .By comparing the traditional neural network and BN method , experimental results illustrate that , the target recognition algorithm based on MSBN can effectively supplement multi-source information , and thus, can improve the recognition accura-cy of agricultural vehicles in the complicated environment .
出处 《智能系统学报》 CSCD 北大核心 2013年第5期453-458,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(90205019 60774064) 陕西科技大学博士科研启动基金资助项目(BJ12-03) 陕西省教育厅科研计划资助项目(2013JK1114)
关键词 智能农业车辆 MSBN 多智能体 协同推理 环境识别 intelligent agricultural vehicle multiply sectioned Bayesian network (MSBN) multi-agent coordina-tive inference environment recognition
  • 相关文献

参考文献12

  • 1BAKKER T, WOUTERS H, ASSELT K, et al. A vision based row detection system for sugar beet[J]. Computers and Electronics in Agriculture, 2008, 60(1): 87-95..
  • 2GOTTSCHALK R, BURGOS-ARTIZZU X P, RIBEIRO A, et al. Real-time image processing for the guidance of a small agricultural field inspection vehicle[J]. International Journal of Intelligent Systems Technologies and Applications, 2010, 8(1): 434-443.
  • 3王典,刘晋浩,王建利.基于系统聚类的林地内采育目标识别与分类[J].农业工程学报,2011,27(12):173-177. 被引量:21
  • 4ROVIRA-MA F, ZHANG Q, REID J F, et al. Hough-transform-based vision algorithm for crop row detection of an automated agricultural vehicle[J]. Journal of Automobile Engineering, 2005, 219(8): 999-1010.
  • 5赵博,王猛,毛恩荣,张小超,宋正河.农业车辆视觉实际导航环境识别与分类[J].农业机械学报,2009,40(7):166-170. 被引量:17
  • 6PEARL J. Causality: models, reasoning and inference[M]. 2nd ed. Cambridge, UK: Cambridge University Press, 2009.
  • 7Tang Zheng Gao Xiaoguang.Research on the self-defence electronic jamming decision-making based on the discrete dynamic Bayesian network[J].Journal of Systems Engineering and Electronics,2008,19(4):702-708. 被引量:6
  • 8XIANG Y, SMITH J, KROES J. Multiagent Bayesian forecasting of structural time-invariant dynamic systems with graphical models[J]. International Journal of Approximate Reasoning, 2011, 52(7): 960-977.
  • 9XIANG Yang. Probabilistic reasoning in multiagent systems: a graphical models approach[M]. Cambridge, UK: Cambridge University Press, 2002.
  • 10田凤占,张宏伟,陆玉昌,石纯一.多模块贝叶斯网络中推理的简化[J].计算机研究与发展,2003,40(8):1230-1237. 被引量:12

二级参考文献44

共引文献53

同被引文献8

  • 1Haenni R, Romeijn J W,Wheeler G, et al. Probabilistic logics and probabilistic networks [ M ]. Berlin: Springer,2010.
  • 2Koller D,Pfeffer A. Object-oriented Bayesian networks[ M]. London :Morgan Kaufmann Publishers Inc. , 1997.
  • 3Xiang Y,Jensen F V. Inference in multiply sectioned Bayesian networks with extended Shafer-Shenoy and lazy propagation [ M]. London:Morgan Kaufmann Publishers Inc. , 1999.
  • 4Xiang Y. Belief updating in multiply sectioned Bayesian networks without repeated local propagations [ J ]. International Journal of Approximate Reasoning, 2000, 23 (1):1 -21.
  • 5Jensen F V, Lauritzen S L, Olesen K G. Bayesian updating in causal probabilistic networks by local computations [ J ]. Computational Statistics Quarterly, 1990,4 ( 1 ) :269 - 282.
  • 6Madsen A L, Nilsson D. Solving influence diagrams using HUGIN, Shafer-Shenoy and lazy propagation [ M ]. London: Morgan Kaufmann Publishers Inc. ,2001.
  • 7Jensen F V, Jensen F. Optimal junction trees [ M ]. London : Morgan Kaufmann Publishers Inc. , 1994.
  • 8田凤占,张宏伟,陆玉昌,石纯一.多模块贝叶斯网络中推理的简化[J].计算机研究与发展,2003,40(8):1230-1237. 被引量:12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部