期刊文献+

CS-Fe和CS-Fe/Ni的制备及其用于去除钴离子 被引量:2

Preparation of chitosan-stabilized Fe and Fe/Ni nanoparticles for removal of Co^(2+) in water
原文传递
导出
摘要 以氯化铁为铁源,硼氢化钠为还原剂,壳聚糖为稳定剂,采用液相还原法制备壳聚糖稳定纳米铁(CS-Fe);并以氯化铁为铁源,硫酸镍为镍源,硼氢化钠为还原剂,壳聚糖为稳定剂,采用液相还原共沉淀法制备壳聚糖稳定纳米铁镍(CS-Fe/Ni)。通过SEM、EDS、XRD、FT-IR等表征手段,对所制备的CS-Fe和CS-Fe/Ni的形貌及微观结构进行表征,并以Co2+为目标去除物评价CS-Fe和CS-Fe/Ni的反应活性。初步研究表明,制成的CS-Fe含有单质纳米铁,颗粒多数以30~90nm球形颗粒为主;而CS-Fe/Ni材料中含有纳米铁镍,颗粒多数以30~60 nm球形颗粒为主;在相同的实验条件下,反应60min,CS-Fe/Ni对Co2+的去除率高达100%,但是CS-Fe仅为88%,即CS-Fe/Ni对Co2+的去除率比CS-Fe高。 Chitosan-stabilized Fe nanoparticles (CS-Fe) was prepared by chemical reduction in aqueous solution starting from ferric chloride as the raw material, sodium borohydride as reducing agent and chitosan as stabilizing agent. Chitosan-stabilized Fe/Ni nanoparticles (CS-Fe/Ni) was prepared by chemical co-precipitation reduction in aqueous solution starting from ferric chloride and nickel sulfate as the raw materials, sodium boro- hydride as reducing agent and chitosan as stabilizing agent. In addition, SEM, EDS, XRD and FT-IR were em- ployed to characterize CS-Fe and CS-Fe/Ni and the reaction activity of CS-Fe and CS-Fe/Ni was characterized u- sing Co2+ as the model removal reaction. The results showed that most of the nano-iron in the CS-Fe is between 30 nm and 90 nm and most of the nauo-iron and Ni in the CS-Fe/Ni is between 30 nm and 60 nm. 100% of Co^2+ was removed using CS-Fe/Ni,while only 88% was removed by CS-Fe under the same experimental condition with 60 min. Therefore,the removal efficiency of Co^2+ by CS-Fe/Ni was higher than that by CS-Fe.
出处 《环境工程学报》 CAS CSCD 北大核心 2013年第12期4761-4765,共5页 Chinese Journal of Environmental Engineering
基金 福建师范大学闽江学者人才引进基金资助(200604) 福建省教育厅资助项目(JB12007)
关键词 壳聚糖稳定纳米铁镍 去除率 还原剂 CS-Fe/Ni removal rate reducing agent
  • 相关文献

参考文献1

二级参考文献15

  • 1张树清.规模化养殖畜禽粪有害成分测定及其无害化处理效果.北京:中国农业科学院博士后研究工作报告,2004.
  • 2SunY. , LiX. , ZhangW. , et al. A method for the preparation of stable dispersion of zerovalent iron nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 308(1-3) : 60-66.
  • 3Ponder S. M. , J. G. Darab,Thomas E. M. Remediation of Cr(VI) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zerovalent iron. Environ. Sci. Technol., 2000, 34(12) : 2564-2569.
  • 4C. Gu, K. G. Karthikeyan. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sei. Technol. , 2005,39(8) : 2660-2667.
  • 5J. M. Wessels, W. E. Ford, W. Szymczak, et al. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+ : A spectroscopic study. J. Phys. Chem. B, 1998, 102(46): 9323-9331.
  • 6Tongaree S. , D. Flanagan. The interaction between oxytetracycline and divalent metal ions in aqueous and mixed solvent systems. Pharmaceutical Development and Technology, 1999, 4(4) : 581-591.
  • 7Arias M. , M. GarciaFalcon. Binding constants of oxytetracyeline to animal feed divalent cations. Journal of Food Engineering,2007, 78(1) : 69-73.
  • 8Matheson L. J. , Tratnyek P. G. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. , 1994,28(12) : 2045-2053.
  • 9Dalmazio I. , M. Ahneida. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18(4) : 679-687.
  • 10Jiao S. , Zheng S. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere, 2008,73(3) : 377-382.

共引文献12

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部