期刊文献+

一类食物链模型Hopf分支的存在性

Hopf Bifurcation Existence on Aood Chain Model
下载PDF
导出
摘要 考虑了一类三维Gause型食物链模型,通过对模型线性部分对应特征方程特征根的分布情况的讨论给出了共存平衡解的稳定性和Hopf分支的存在性,并给出了一组数值模拟数据来说明分支周期解的方向,周期及其稳定性。 A class of 3-dimensional Gause food chain model is considered. The stability of the equilibrium points and the existence of Hopf bifurcation are obtained via employing the polynomial theorem to analyze the distribu- of the roots of the associated characteristic equation with the linear part of the model. A numerical simulation is carried out to illustrate the results.
作者 张玲 郭爽
出处 《大庆师范学院学报》 2013年第6期48-51,共4页 Journal of Daqing Normal University
基金 黑龙江省教育厅科学技术研究资助项目(12523001)
关键词 Gause型食物链 HOPF分支 数值模拟 Gause food chain model Hopf bifurcation numerical simulations.
  • 相关文献

参考文献8

  • 1Freedman H.I.,Waltman P..Mathematic analysis of some three species food chain models[J].Math.Biosci.,1978,33:257-276.
  • 2Wonlyul Ko,Kimun Ryu.A qualitative study on general Gause-type predator-prey models with non-monotonic functional response[J].Nonlinear Analysis:Real World Applications,2009(10):2558-2573.
  • 3S.M.Moghadas,B.D.Corbett.Limit cycles in a generalized Gause-type predator-prey model,Chaos[J].Solitons and Fractals2008,37:1343-1355.
  • 4Wonlyul Ko,Kimun Ryu.A qualitative study on general Gause-type predator-prey models with constant diffusion rates[J].J.Math.Anal.Appl,2008,34(4):217-230.
  • 5Xiaoquan Ding,Jifa Jiang.Multiple periodic solutions in generalized Gause-type predator-prey systems with non-monotonic numerical responses[J].Nonlinear Analysis:Real World Applications,2009(10):2819-2827.
  • 6Hassard B D,Kazsinoff W D,Wan Y H.Theory and Application of Hopf bifurcation[M].London:Cambridge University Fress,1982:14-70.
  • 7H.B.Wang and W.H.Jiang.Hopf-pitchfork bifurcation in van der Pol's oscillator with nonlinear delayed feedback[J].Journal of Mathematical Analysis Applications,2010,36(2):9-18.
  • 8S.G.Ruan,J.J.Wei.On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion[J].Mathematical Medicine and Biology,2001,18(1):41-52.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部