摘要
为了在实施分类工作时将不相关的、多余的、具有噪声的特征从问题表示中去除,以降低复杂度并得到可接受的性能,提出了一种基于多目标进化封装的特征选择方法。首先利用染色体选择的特征重新参数化人脸图像从而获得主动形变模型特征集;然后通过多目标遗产算法进行特征选择,在最小化特征子集基数的同时最大化判别容量;最后结合提出的综合适应度函数及k-近邻分类器完成人脸的识别。在Essex人脸数据库上的实验验证了所提方法的有效性,实验结果表明,相比其它几种较为先进的方法,所提方法不仅降低了表示的维度,同时提高了分类性能。
To perform the classification task with reduced complexity and acceptable performance by excluding irrelevant, redundant, onoisy from the problem representation, feature selection method based on multi-objective evolutionary wrapperiproposed. Firstly, featurechosen by chromosome are used to parameterize face image again so ato gefeature setof active shape model. Then, multi-objective genetialgorithm iused to selecfea- tures. Finally, proposed comprehensive fitnesfunction and K nearesneighboclassifieare used to finish recogni- tion. The efficiency of proposed method habeen verified by experimenton Essex face database. Experimental re- suitshow thaproposed method haimproved the classification performance awell areducing the representation dimensionality comparing with several advanced approaches.
出处
《科学技术与工程》
北大核心
2013年第33期9835-9842,共8页
Science Technology and Engineering
基金
国家自然科学基金项目(F020704)
河南省科技攻关计划项目(102102210419)资助
关键词
人脸识别
进化封装
多目标遗传算法
特征选择
主动形变模型
face recognition evolutionary wrappers multi-objective genetic algorithms feature se-lection active shape model