期刊文献+

基于机器学习的入侵检测方法性能评估 被引量:1

IDS performance analysis by applying machine learning approaches
下载PDF
导出
摘要 随着网络技术的快速发展,网络恶意攻击方式也逐渐增多,入侵检测系统被开发用于监控和预警企业网络运行状态,保证企业计算机系统的安全。由于现有自适应动态捕获恶意网络数据流的入侵检测系统通常会占用较大的计算机系统资源,为此,文章基于机器学习方法预测网络用户行为和网络数据流分类,针对采用的代表性方法进行对比研究和性能评估,提出能动态适应网络运行状况的轻量级入侵检测系统规则提取技术。 With the rapid development of network technology, there are emerging variously malicious attack over networks.Therefore, kinds of Intrusion Detection System (IDS) are designed and implemented to secure enterprise computer systems by monitoring and predicting the network status.However,most existing dynamic IDS is inclined to be heavy on computer resources when detecting the malicious network traffic.This paper predicts the user behavior and categorized traffic based on representative machine learning approaches,proposes a rule extraction benefit for developing a light and adaptable IDS,and concludes the results from the performances produced by those approaches.
出处 《企业技术开发》 2013年第12期1-4,共4页 Technological Development of Enterprise
基金 网络运行安全监控技术研究(2011GK2008)
关键词 入侵检测系统 机器学习 规则提取 性能评估 intrusion detection system machine learning rule extraction performance analysis
  • 相关文献

参考文献8

  • 1Dhage,Sudhir N.,B.B.Meshram.Intrusion detection system in cloud computing environment[J].International Journal of Cloud Computing, 2012,1 ( 2-3 ) : 261-282.
  • 2Subramanian Appavu Alias Balamurugan,Ramasamy Rajaram.Effective and Efficient Feature Selection for Large-scale Data Using Bayes' Theorem[J].International Journal of Automation and computing,2009,6(1):62-71. 被引量:7
  • 3L. Prodromidis,S.J.Stolfo. Mining databases with different schemas:Integrating incompatible classifiers[C].Proc.4th Intl. Conf.Knowledge Discovery and Data Mining, 1998.
  • 4黄林军,张勇,郭冰榕.机器学习技术在数据挖掘中的商业应用[J].中山大学学报论丛,2005,25(6):145-148. 被引量:15
  • 5Han,Sang Wook,Jae Yearn Kim.A new decision tree algorithm based on rough set theory[J].International Jour- nal of Innovative Computing,Information and Control,2008 (10) :2749-2757.
  • 6J.R.Quinlan.Improved use of continuous attributes in c.45 [J].Journal of Artificial Intelligence Research,1996 (4): 77-90.
  • 7程克非,程蕾,黄永东.基于J48决策树算法的水质评价方法[J].计算机工程,2012,38(11):264-267. 被引量:14
  • 8Preacher,Kristopher J.,Patrick J.Curran,and Daniel J. Bauer.Computational tools for probing interactions in multi- ple linear regression,multilevel modeling,and latent curve analysis[J].Journal of Educational and Behavioral Statis- tics, 2006,31 (4) : 437-448.

二级参考文献29

  • 1美国公共卫生协会.水和废水标准检验法[M].北京:中国建筑工业出版社,1985.450-453.
  • 2[美]R·格罗思.数据挖掘-构筑企业竞争优势[M].西安:西安交通大学出版社,2001..
  • 3Bose,I.,Mahapatra,R.K.Business data mining - a machine learning perspective.Information &Management.39 (2001).
  • 4全国地表水水质调查评价汇总技术小组.全国地表水水质评价[Z].华东水利学院环境水利研究所,1984.
  • 5中华人民共和国卫生部.生活饮用水卫生规范[Z].2001.
  • 6水和废水监测分析方法.水和废水监测分析方法[M].北京:中国环境科学出版社,1989.
  • 7SomonKEShyrnonDVA.数据挖掘基础教程[M].范明,牛常勇,译.北京:机械工业出版社,2009.
  • 8TanPangning,SteinbachM,KumarV数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社,2006.
  • 9MehmedK.数据挖掘-概念、模型、方法和算法[M].闪四清,陈茵,程雁,等,译.北京:清华大学出版社,2003.
  • 10Kira K, Rendell L. A Practical Approach to Feature Selection[C]// Proe. of International Conference on Machine Learning. [S. I.]: IEEE Press, 1992.

共引文献33

同被引文献8

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部