期刊文献+

基于信息融合的精密磨削砂轮磨损状态在线识别方法研究 被引量:6

ON-LINE IDENTIFICATION OF WHEEL WEAR CONDITION IN PRECISION GRINDING BASED ON INFORMATION FUSION
下载PDF
导出
摘要 高质量非球面光学元件批量制造是目前精密磨削技术力求实现的目标。为了提高非球面光学元件精密磨削的加工效率,必须在加工过程中动态识别砂轮磨损状态,在砂轮接近或达到寿命周期时对其进行修整。寻求一种经济可行的方式,实现砂轮寿命周期在线评估,利用声发射、砂轮振动、磨削力等多种类型加工过程信号,提取和选择能够全面、灵敏反应砂轮磨损状态的特征,基于Dempster-Shafer证据理论,进行多源信息融合,实现精密磨削砂轮磨损状态在线识别。 Grinding wheel should be addressed when it just reaches its expectancy in order to achieve high machining efficiency of aspheric optical lens. The realization of on-line estimating wheel life is based on the automatic identification of the wheel wear condition. Characters of dynamical process signals change accompanied with the lapse of the wheel life. Therefore, process signals can be used to monitor and estimate the wheel condition. Acoustic emission (AE) , wheel vibration and grinding force are picked up to abstract three kinds of representative monitoring parameters. They are the skewness of the AE power spectrum, the complexity degree of the wheel vibration and the ratio of normal component and tangential component of the grinding force. These monitoring parameters are sensitive to different macro-and micro-wear of grinding wheel. The Dempster-Shafer evidence theory, which is one of the decision-level information fusion technologies, is employed to acquire a reliable decision about the status of the grinding wheel.
出处 《机械强度》 CAS CSCD 北大核心 2013年第6期737-742,共6页 Journal of Mechanical Strength
基金 福建省自然科学基金计划资助项目(2012J05098)~~
关键词 砂轮磨损 在线识别 信息融合 D-S(Dempster-Shafer)证据理论 精密磨削 Grinding wheel wear On-line identification Information fusion Dempster-Shafer evidence theory Precision grinding
  • 相关文献

参考文献11

  • 1郭隐彪,王振忠,彭云峰,杨炜,毕果.大口径光学元件微纳加工与检测技术研究与应用[J].厦门大学学报(自然科学版),2011,50(2):286-292. 被引量:2
  • 2Furntani K. , Ohgure N, Hieu N T, et al. In-process measurement of topography change of grinding wheel by using hydrodynamic pressure [ J ]. International Journal of Machine Tools & Manufacture, 2002 (42) : 1447.
  • 3-1453. Brinksmeier E, Heinzel C, Meyer L. Development and application of a wheel based process monitoring system in grinding[ J ]. CIRP Annals-Manufacturing Technology, 2005, 54( 1 ) : 301-304.
  • 4Miustaoglu C, Ertunc H M, Ocak H. Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system[ J]. Mechanical Systems and Signal Processing, 2009, 23 (2) : 539-546.
  • 5Warren Liao T. Feature extraction and selection from acoustic emission signals with an application in grinding wheel condition monitoring[J]. Engineering Application of Artificial Intelligence, 2010, 23 : 74-84.
  • 6Inasaki I. Sensor fusion for monitoring and controlling grinding [ J ]. The International Journal of Advanced Manufacturing Technology, 1999, 15: 730-736.
  • 7Amin A Mokbel, Maksoud T M A. Monitoring of the condition of diamond grinding wheels using acoustic emission technique [ J ]. Journal of Materials Processing Technology, 2000, 101 ( 1-3 ) : 292-297.
  • 8Wakuda M, Inasaki I, Ogawa K, Takahara M. Monitoring of the grinding process with an AE sensor integrated CBN wheel [ J ]. Journal of Advanced Automation Technology, 1993, 5 (4) : 179- 184.
  • 9翁泽宇,丁红钢,郭明飞,贺兴书.平面磨削颤振试验研究[J].机械强度,2006,28(1):25-28. 被引量:7
  • 10Lempel A, Ziv J. On the complexity of finite sequenced [ J ].Transactions on Information Theory, 1976, 22( 1 ) : 75-81.

二级参考文献24

共引文献7

同被引文献96

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部