期刊文献+

超薄全局应变硅薄膜的应变弛豫研究 被引量:3

Study on Strain Relaxation in Ultrathin Global-strained Si Thin Films
下载PDF
导出
摘要 采用Ge浓缩法制备了高质量超薄绝缘体上锗硅(SiGe-on-insulator,SGOI)材料,然后在SGOI上通过超高真空化学气象沉积(UHVCVD)法外延了厚度为15 nm的超薄全局应变硅单晶薄膜,使用电子束光刻和反应离子刻蚀在样品上制备了一组纳米级尺寸不等的应变硅线条和应变硅岛,并利用TEM、SEM、Raman等分析手段表征样品。实验结果表明,本文制备的应变硅由于其直接衬底超薄SiGe层的低缺陷密度和应力牵制作用,纳米图形化的应变Si弛豫度远小于文献报道的无Ge应变硅或者具有Ge组分渐变层SiGe衬底的应变Si材料。 High quality SiGe-on-insulator (SGOI) was prepared by a Ge condensation method, and then a 15-nm-thick global-strained Si thin films were epitaxially grown on it. In order to evaluate the strain stability, arrays of strained Si/SiGe nano-stripes and nano-pillars were fabricated by electron-beam lithography (EBL) and reactive-ion etching (RIE), and then the samples were characterized by transmission electron microscopy (TEM) , scanning electron microscopy (SEM), Raman spectroscopy etc. The results indicated that in the nano-patterned heterostructure strained Si/SiGe, the observed relaxation is smaller than Ge-free strained Si and strained Si on the graded SiGe layers reported in literatures, which is mainly attributed to the fully fabricated by modified Ge condensation.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2013年第11期2396-2400,共5页 Journal of Synthetic Crystals
基金 国家自然科学基金(61306007) 河南省科技攻关重点项目(132102210048) 南阳师范学院专项项目(ZX2012017)
关键词 全局应变硅 纳米图形 应变弛豫 拉曼光谱 global-strained Si nano-pattern strain relaxed and dislocation-free SiGe virtual substrate relaxation Raman spectroscopy
  • 相关文献

参考文献17

  • 1Ronse K P, De Bisschop, Vandenberghe G, et al. Opportunities and Challenges in Device Scaling by the Introduction of EUV Lithography[ C ]. Electron Devices Meeting (IEDM),2012 IEEE International.
  • 2Pradhan K P, Mohapatra S K, Sahu P K. An Analytical Surface Potential and Threshold Voltage Model of Fully Depleted Strained-SOI MOSFETs in Nanoscale with High-k Gate Oxide [ C ]. Emerging Technology Trends in Electronics, Communication and Networking ( ET2ECN), 2012 1 st International Conference on 2012 IEEE.
  • 3Colinge J P. Silicon-on-insulator Technology: Materials to VLSI[ M]. Massachusetts:Springer,2004.
  • 4Mohta N, Thompson S E. Mobility Enhancement [ J ]. Circuits and Devices Magazine, IEEE ,2005,21 (5) :18-23.
  • 5Lei R Z, Tsai W, Aberg I, et al. Strain relaxation in Patterned Strained Silicon Directly on Insulator Structures[ J]. Applied Physics Letters ,2005, 87(25 ) :251926.
  • 6Himcinschi C, Singh R, Radu I, et al. Strain Relaxation in Nanopatterned Strained Silicon Round Pillars [ J ]. Applied Physics Letters,2007,90 (2) :021902.
  • 7Usuda K, Mizuno T, Tezuka T, et al, Strain Relaxation of Strained-Si Layers on SiGe-on-insulator (SGOI) Structures after Mesa Isolation[J]. Applied Surface Science,2004,224( 1-4 ) : 113-116.
  • 8Takagi S I, Mizuno T, Tezuka T, et al, Fabrication and Device Characteristics of Strained-Si-on-insulator (Strained-SOI) CMOS [ J ]. Applied Surface Science ,2004,224(1-4) :241-247.
  • 9Di Z F, Zhang M, Liu W L, et al. Relaxed SiGe-on-insulator Fabricated by Dry Oxidation of Sandwiched Si/SiGe/Si Structure [ J ]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2005,124:153-157.
  • 10Liu X Y, Ma X B, Du X F, et al. Modified Postannealing of the Ge Condensation Process for Better-strained Si Material and Devices [ J ]. Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, 2010,28 ( 5 ) : 1020 -1025.

二级参考文献45

  • 1岳兰平,何怡贞.纳米Ge颗粒镶嵌薄膜的Raman散射光谱研究[J].物理学报,1996,45(10):1756-1761. 被引量:13
  • 2Tony A and Sumant S 2006 Potentials IEEE 25 No 4 31.
  • 3Welser J and Hoyt J Let al 1994 Tech. Dig. Int. Electron Devices Meet. 947 373.
  • 4Park J G and Lee G S et al 2006 Mater. Sci. Engin. B 134 142.
  • 5Tezuka T and Sugiyama N et al 2001 Appl. Phys. Lett. 79 1798.
  • 6Tezuka T, Sugiyama N and Takagi S 2003 J. Appl. Phys. 94 7553.
  • 7Di Z F, Zhang M, Liu W Let al 2005 J. Vac. Sci. Technol. B234.
  • 8Di Z F, Zhang M, Liu W Let al 2005 Mater. Sci. Engin. B 124 153.
  • 9Lee S W, Chueh Y L, Chen L J and Chou L J 2005 J. Vac. Sci. Technol. A 23 4.
  • 10Di Z F and Chu P K et al 2005 J. Appl. Phys. 97 064504.

共引文献4

同被引文献71

  • 1于杰,王茺,杨洲,陈效双,杨宇.绝缘层上应变SiGe沟道p-MOSFET电学特性模拟分析[J].红外与毫米波学报,2013,32(4):304-308. 被引量:1
  • 2唐元洪,裴立宅.硅纳米管的制备及应用前景[J].新材料产业,2005(3):16-19. 被引量:4
  • 3梁仁荣,张侃,杨宗仁,徐阳,王敬,许军.采用SiGe虚拟衬底高迁移率应变硅材料的制备和表征(英文)[J].Journal of Semiconductors,2007,28(10):1518-1522. 被引量:2
  • 4Jacobsen R S, Andersen K N, Borel P I,et al. Strained silicon as a new electro-optic material[J]. Nature, 2006,441(7090):199-202.
  • 5Fossum J G,Zhang W. Performance projections of scaled CMOS devices and circuits with strained Si-on-SiGechannels[J]. Electron Devices, IEEE Transactions on, 2003,50(4) : 1042-1049.
  • 6Abstreiter G,Eberl K,Friess E,et al. Silicon/germanium strained layer superlattices[j]. Journal of CrystalGrowth, 1989,95(1):431-438.
  • 7Gogotsi Y, Baek C, Kirscht F. Raman microspectroscopy study of processing-induced phase transformations andresidual stress in silicon[J]. Semiconductor Science Technology, 1999,14(10) :936 -944.
  • 8Fischetti M V,Laux S E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge and SiGealloys[J]. Journal of Applied Physics, 1996,80(4) :2234 -2252.
  • 9Boykin T B, Klimeck G,Eriksson M A,et al. Valley splitting in strained silicon quantum wells[J]. AppliedPhysics Letters, 2004,84(1): 115 -117.
  • 10Kitagawa I,Maruizumi T, Sugii N. Theory of electron-mobility degradation caused by roughness with longcorrelation length in strained-silicon devices[J]. Journal of Applied Physics, 2003,94(1) *465 - 470.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部