期刊文献+

基于多输出支持向量回归的SHS-熔铸涂层性能模拟 被引量:1

Simulation on the Performance of SHS-Fusion Casting Coating Based on the Multi-Output Support Vector Regression
原文传递
导出
摘要 鉴于离心-自蔓延高温合成制备陶瓷涂层配方中添加剂对陶瓷涂层性能影响的复杂性,采用遗传算法优化支持向量机参数,建立添加剂与陶瓷涂层性能之间的支持向量回归模型,并用测试数据验证模型。结果表明,复合钢管陶瓷压溃强度及陶瓷涂层致密度的模拟值与试验值的相对误差最大值分别为6.2%和5.2%,采用遗传算法优化多输出支持向量机参数可以有效地提高模型的精度,为陶瓷涂层配方的优化提供新途径。 Considering the complexity between addictives in the formula and the performance of the ceramic coating prepared by centrifugal self-propagating high-temperature synthesis process(SHS), the genetic algorithm was used to optimize the parameters of support vector machine, and a model which described the relationship between addictives and the ceramic performance was established by support vector regression. Besides, the model was verified by the tested data. The results show that the maximum relative error of the crushing strengthen of the compound steel-ceramic pipes and the relative density of the ceramic reach 6.2 % and 5.2 %, respectively, and the accuracy of the model was improved effectively with the parameters of M-SVR model optimized by the genetic algorithm, providing a optimization ways to the formula of ceramic coating.
出处 《特种铸造及有色合金》 CAS CSCD 北大核心 2013年第12期1098-1101,共4页 Special Casting & Nonferrous Alloys
基金 江苏省科技支撑计划(工业部分)资助项目(BE2009090) 江苏高校优势学科建设工程资助项目 南通市瞪羚企业培育计划资助项目(AA2011004) 南通市应用研究计划资助项目(BK2013017)
关键词 多输出支持向量回归 离心-自蔓延熔铸 遗传算法 参数优化 模拟 Multi-Output Support Vector Regression Centrifugal SHS-Fusion Casting Genetic Algorithm Parameters Optimization Simulation
  • 相关文献

参考文献22

二级参考文献106

共引文献137

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部