期刊文献+

一个捕食者和食饵均具有阶段结构的捕食模型的稳定性

Stability of a Predator-prey Model with Stage Structure for the Predator and the Prey
下载PDF
导出
摘要 讨论一个捕食者和食饵均具有阶段结构的捕食模型的稳定性.通过分析特征方程,运用Hurwitz判定定理,讨论了该模型非负平衡点的局部稳定性;通过构造适当的Lyapunov泛函,运用LaSall不变集原理,讨论了该模型的非负平衡点的全局稳定性,从而得到了该生态系统永久持续生存与灭绝的充分条件. The stability of a predator-prey model with stage structure for both the predator and the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is discussed. By using Lyapunov functions and the LaSalle invariant principle, the global stability of each of feasible equilibria of the model is discussed.
出处 《北华大学学报(自然科学版)》 CAS 2013年第6期621-625,共5页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金项目(11101117)
关键词 捕食模型 阶段结构 稳定性 predator-prey model stage-structure stability
  • 相关文献

参考文献5

  • 1W G Aiello, H I Freedman. A Time Delay Model of Single Species Growth with Stage-structure [ J ]. Math Biosci, 1990,101: 139-156.
  • 2Wang W, Chen L. A Predator-prey System with Stage-structure for Predator[ J]. Comput Math Appl, 1997,33:83-91.
  • 3徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 4Kuang Y. Delay Differential Equation with Application in Population Dynamics[ M]. New York:Academic Press, 1993.
  • 5Hale Jack K. Theory of Functional Differential Equation [ M ]. Berlin : Springer Heidelberg, 1971.

二级参考文献15

  • 1Goh B S. Global stability in two species interactions. J Math Biol, 1976, 3(3-4): 313-318
  • 2Hastings A. Global stability in two species systems. J Math Biol, 1978, 5(4): 399-403
  • 3He X Z. Stability and delays in a predator-prey system. J Math Anal Appl, 1996, 198(2): 355-370
  • 4Aièllo W G, Freedman H I. A time delay model of single-species growth with stage structure. Math Biosci,1990, 101(2): 139-153
  • 5Aiello W G, Freedman H I, Wu J. Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J Appl Math, 1992, 52(3): 855- 869
  • 6Wang W, Chen L. A predator-prey system with stage structure for predator. Comput Maria Appl, 1997,33(8): 83 -91
  • 7Magnusson K G, Destabilizing effect of cannibalism on a structured predator-prey system. Math Biosci,1999, 155(1): 61-75
  • 8Zhang X, Chen L, Neumann A U. The stage-structured predator-prey model and optimal havesting policy.Math Biosci, 2000, 168(2): 201- 210
  • 9Ma Z. Mathematical Modeling and Research in Ecology. Hefei: Anhui Educational Publishing House,1996. 25- 26
  • 10Cushing J M. Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics 20. Heidelberg, Springer, 1979. 13-70

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部