期刊文献+

周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性 被引量:2

Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen
原文传递
导出
摘要 利用基于密度泛函理论的第一性原理方法,研究了内边缘氧饱和的周期性凿洞石墨烯纳米带(G NR)的电子特性.研究结果表明:对于凿洞锯齿形石墨烯纳米带(ZGNRs),在非磁性态时不仅始终为金属,且金属性明显增强;反铁磁态(AFM)时为半导体的ZGNR,凿洞后可能成为金属;但铁磁态(FM)为金属的ZGNR,凿洞后一般变为半导体或半金属.而对于凿洞的扶手椅形石墨烯(AGNRs),其带隙会明显增加.深入分析发现:这是由于氧原子对石墨烯纳米带边的电子特性有重要的影响,以及颈次级纳米带(NSNR)及边缘次级纳米带(ESNR)的不同宽度及边缘形状(锯齿或扶手椅形)能呈现出不同的量子限域效应.这些研究对于发展纳米电子器件有重要的意义. By using the first-principles method and the density-functional theory, the electronic properties of graphene nanoribbons(GNRs) with periodic nanoholes passivated by oxygen are studied. It is shown that for the zigzag graphene nanoribbon (ZGNR) in nonmagnetic state(NM), the metallic properties not only still remain but also are obviously enhanced after the holes are punched. But for the antiferromagnetic-state (AFM) ZGNR, after punching holes, it would be changed from semiconductor to metal. While for the ferromagnetic-state (FM) ZGNR, it can be transformed from metal to semiconductor or semimetal after punching holes. Besides, for the punched armchair graphene nanoribbon (AGNR), its band gap will be significantly widened. The in-depth analysis shows that these results are due to the effects of oxygen atoms on electronic properties of GNRs, and also due to the different quantum confinement effects from the neck subprime nanoribbon (NSNR) and edge subprime nanoribbon (ESNR) with different width and edge shape(zigzag or armchair). These findings are important for developing nano electronic devices.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第23期273-279,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61371065 61071015 61101009 61201080) 湖南省教育厅重点资助科研项目(批准号:12A001) 湖南省高校科技创新团队支持计划 湖南省重点学科建设项目 长沙理工大学创新项目资助的课题~~
关键词 石墨烯纳米带 纳米洞 内边缘氧饱和 电子特性 graphene nanoribbon, periodic nanoholes, inner-edge oxygen passivation, electronic properties
  • 相关文献

参考文献42

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666.
  • 2Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469.
  • 3Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418.
  • 4Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805.
  • 5Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li Guo, Gao H J 2009 Chin. Phys. B 18 3008.
  • 6Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese).
  • 7Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese).
  • 8Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803.
  • 9Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Qiu M 2012 Appl. Phys. Lett. 100 063107.
  • 10OuYang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese).

二级参考文献267

  • 1刘首鹏,周锋,金爱子,杨海方,马拥军,李辉,顾长志,吕力,姜博,郑泉水,王胜,彭练矛.人工裁剪制备石墨纳米结构[J].物理学报,2005,54(9):4251-4255. 被引量:11
  • 2倪向贵,殷建伟.拉伸条件下双壁碳纳米管弹性性能的原子模拟[J].物理学报,2006,55(12):6522-6525. 被引量:3
  • 3胡海鑫 张振华 刘新海 邱明 丁开和.物理学报,2009,58:7165-7165.
  • 4Novoselov K S , Geim A K, Morozov S V, Jiang D, Zhang y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666.
  • 5Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620.
  • 6Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 110.
  • 7Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201.
  • 8Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602.
  • 9Brey L, Fertig H A 2006 Phys. Rev. B 73 195408.
  • 10Westerveh R M 2008 Science 320 324.

共引文献56

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部