期刊文献+

基于倏逝场耦合的石墨烯波导光传输相位特性仿真与实验研究 被引量:2

Simulation and experimental research of phase transmission features based on evanescent field coupled graphene waveguide
原文传递
导出
摘要 石墨烯材料应用到各种光波导器件中正成为新一代光子器件的重要发展方向之一,目前基于石墨烯的光纤和集成光子器件研究越来越受到国内外的重视.本文建立了一种由微纳光纤耦合光倏逝场,并在石墨烯薄膜中传输的模型.通过有限元分析法,研究了光在这种石墨烯波导中传输光场的强度分布和相位特性,并通过实验进行了验证.结果表明,沿着微纳光纤-石墨烯光波导传播的倏逝场的强度分布和相位均受石墨烯材料作用,石墨烯材料能有效聚集和导行波导中传输的高阶模,在单位传输长度上具有更密集的等相位面.本文提出了一种利用微纳光纤耦合光倏逝场研究石墨烯相位响应特性的新方法,对基于石墨烯波导的新型调制器、滤波器、激光器和传感器等光子器件的设计和应用具有一定的参考意义. The applications of graphene-based optical waveguide devices have been demonstrated to be one of the important directions of development for a new generation of photonic devices, and the research of graphene-based optical fiber and integrated photonic devices has attracted a great deal of attention at home and abroad. In this paper, a graphene planar optical waveguide is proposed which could transmit light by the evanescent field coupling with a microfiber. Finite element method is adopted to simulate the optical field intensity distribution and phase features of light propagating along graphene planar optical waveguide, and an experiment is performed to verify these features. Experimental results show that the transmission distribution and phases of the evanescent field are modulated by graphene obviously, it could effectively gather and transmit the high-order modes, exhibiting denser equal-phase faces on unit propagating length. In this work, we propose a new method in which the microfiber is adopted to investigate the transmission phase feature of graphene by evanescent wave coupling, which could be used as references for the design and application of graphene-based optical devices, such as modulator, filter, laser and sensor.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第23期374-380,共7页 Acta Physica Sinica
基金 国家自然科学基金青年科学基金(批准号:61107072 61107073)和国家自然科学基金重大项目(批准号:61290312)资助的课题~~
关键词 石墨烯平面光波导 倏逝波 光场强度 相位 graphene planar optical waveguide, Evanescent wave, Optical field intensity, phase
  • 相关文献

参考文献31

  • 1Geim A K, Novoselov K S 2007 Nature Materials 6 183.
  • 2Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese).
  • 3Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photonics 6 749.
  • 4Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64.
  • 5Bao Q L, Zhang H, Wang B, Ni Z H, Haley C, Lim Y X, Wang Y, Tang D Y, Loh K P 2011 Nature Photonics 5 411.
  • 6Feng D J, Han W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin 62 054202 (in Chinese).
  • 7Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 111110.
  • 8Yao B C, Wu Y, Cheng Y, Liu X P, Gong Y, Rao Y J 2012 Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors Beijing, China, October 15–19, 2012 p8421CD.
  • 9Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 225 057701.
  • 10Tong L M, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816.

二级参考文献248

共引文献62

同被引文献5

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部