期刊文献+

Annoyance-type speech emotion detection in working environment

工作环境中的语音烦躁情绪检测方法(英文)
下载PDF
导出
摘要 In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a Mandarin database with two thousands samples is built. In searching for annoyance-type emotion features, the prosodic feature and the voice quality feature parameters of the emotional statements are extracted first. Then an improved back propagation (BP) neural network based on the shuffled frog leaping algorithm (SFLA) is proposed to recognize the emotion. The recognition capability of the BP, radical basis function (RBF) and the SFLA neural networks are compared experimentally. The results show that the recognition ratio of the SFLA neural network is 4. 7% better than that of the BP neural network and 4. 3% better than that of the RBF neural network. The experimental results demonstrate that the random initial data trained by the SFLA can optimize the connection weights and thresholds of the neural network, speed up the convergence and improve the recognition rate. 为了检测工作人员的烦躁情绪,实现情感状态的评价,通过在工作环境中诱发情感语音,获取了足够的测试样本,建立了2 000条样本的工作环境情感语音数据库.在检测烦躁情绪过程中,首先提取语音的韵律特征和音质特征参数,然后利用基于蛙跳算法的改进的BP神经网络进行烦躁情绪识别.实验比较了BP,RBF和SFLA神经网络的性能,结果显示SFLA神经网络的识别率比BP神经网络高4.7%,比RBF神经网络高4.3%.实验结果表明,使用蛙跳算法训练随机初始数据可以优化神经网络的连接权重和阈值,加快收敛速度,提高识别率.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期366-371,共6页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.61375028,61301219) China Postdoctoral Science Foundation(No.2012M520973) the Scientific Research Funds of Nanjing Institute of Technology(No.ZKJ201202)
关键词 speech emotion detection annoyance type sentence length shuffled frog leaping algorithm 语音情感检测 烦躁类型 句子长度 蛙跳算法
  • 相关文献

参考文献2

二级参考文献32

  • 1董燕,施承孙,周晓梅,侯桂芝.飞行人员情绪表达特征对认知绩效的影响[J].第四军医大学学报,2005,26(4):374-377. 被引量:5
  • 2王治平,赵力,邹采荣.基于基音参数规整及统计分布模型距离的语音情感识别[J].声学学报,2006,31(1):28-34. 被引量:26
  • 3李爱军,王天庆,殷治纲.863语音识别语音语料库RASC863-四大方言普通话语音库[C]//中国中文信息学会.第七届全国人机语音通讯学术会议(NCMMSC7),厦门:2003:41-44.
  • 4R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, et al. Emotion recognition in human-computer interaction [ J ]. IEEE Signal Processing magazine, 2001, 18( 1 ) :32-80.
  • 5Klaus R. Scherer, Vocal communication of emotion: A review of research paradigms [ J ]. Speech Communication, 2003, 40 : 227-256.
  • 6Zhongzhe Xiao, Dellandrea E, Weibei Dou, et al. Features extraction and selection for emotional speech classification [ C ]. IEEE Conference on Advanced Video and Signal Based Surveillance, 2005:411-416.
  • 7D. Ververidis, C. Kotropoulos,I. Pitas. Automatic emotional speech classification[ C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 1:593-596.
  • 8B. Sehuller, G. Rigoll and M. Lang. Hidden markov model-based speech emotion recognition [ C ]. Proceedings of IEEE-ICASSP, 2003:401-405.
  • 9T. Johnstone. Emotional speech elicited using computer games [ C ]. Fourth International Conference on Spoken Language, 1996, 3 : 1985-1988.
  • 10T. Johnstone, CM van Reekum, K hird, K Kirsner, et al. Affective speech elicited with a computer game [ J ]. Emotion, 2005, 5(4) :513-518.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部