期刊文献+

中文网络评论中产品特征提取方法研究 被引量:13

Research on the Method of Extracting Features from Chinese Product Reviews on the Internet
原文传递
导出
摘要 针对中文网络客户评论中产品特征提取问题,提出采用FP增长算法获取候选产品特征集,再根据独立支持度、频繁项名词非特征规则及PMI阈值过滤技术对候选产品特征进行筛选,得到最终产品特征集,从而实现对中文网络客户评论中产品特征信息的自动挖掘。采用数据堂提供的手机评论语料,对该方法进行数据实验,实验结果可以验证该方法的有效性。 Aim for better solving the problem of extracting features from Chinese product reviews on the Intemet, an approach using FP - growth algorithm is proposed to obtain the set of candidate product features. Then, the candidate product features are filtered according to the rules of p - support, non - features frequent nouns and PMI threshold filtering technology. Finally, the final product features set are obtained. Thus, the automatic mining of product features information from Chinese customer reviews on the Internet is achieved. The proposed method is tested with the cell phone reviews from Datatang and the results show that the presented method is valid and effective.
出处 《现代图书情报技术》 CSSCI 北大核心 2013年第12期70-73,共4页 New Technology of Library and Information Service
基金 国家社会科学基金项目"差错管理气氛对企业创新行为的影响机理及对策研究"(项目编号:12CGL049) 重庆市自然科学基金项目"基于在线社交网络的舆情演化及社会化协同过滤推荐算法研究"(项目编号:CSTC2011jjA40045)的研究成果之一
关键词 产品特征 特征提取 关联规则 评论挖掘 Product features Features extracting Association rules Review mining
  • 相关文献

参考文献6

二级参考文献102

共引文献98

同被引文献119

  • 1李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:95
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 4刘庆红,李硕,王晰巍.Web集成环境下企业竞争情报模型构建研究[J].情报科学,2006,24(11):1713-1717. 被引量:5
  • 5姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 6Hu M, Liu B. Mining and summarizing customer reviews [C] //Pro-eeedings of the ACM SIGKDD International Coiferenee on Knowledge Discovery and Data Mining, New York: ACM Press, 2004: 168- 177.
  • 7Popescu A M, Etzioni O. Extracting product fealures mM opinions from review [ C] //Proceedings of the Human Language Technology Conference and the Conference on Empirical Methods in Natural Lan- guage Processing, Stroudsburg, USA: Association for Computational Linguistics, 2005:339 - 346.
  • 8ZhaoHuiTang,JamieMackennan.数据挖掘原理与应用--SQL.Server2005数据库[M].邝祝芳,焦贤龙,高升,译.北京:清华大学出版社,2007:191-205.
  • 9Zhang L, Liu B, Lim S H, et al. Extracting and Ranking Product Features in Opinion Documents [C]. In: Proceedings of the 23rd International Conference on Computational Lingusitics (COLING), Beijing, China. Stroudsburg, PA, USA: ACL, 2010: 1462-1470.
  • 10Jin W, Ho H H, Srihari R K. A Novel Lexicalized HMM-based Learning Framework for Web Opinion Mining [C]. In: Proceedings of the 26th Annual International Conference on Machine Learning (ICML), Montreal, Canada. New York, NY, USA: ACM, 2009: 465-472.

引证文献13

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部