期刊文献+

A two-dimensional high-frequency electrostatic microscanner

A two-dimensional high-frequency electrostatic microscanner
原文传递
导出
摘要 The design of a two-dimensional high-frequency electrostatic microscanner is presented, and an improved method for routing isolation trenches is investigated to increase the reliability and mechanical stability of the resulting device. A sample device is fabricated and tested using an optimized micromachining process. Measurement results indicate that the sample device oscillates at inherent frequencies of 11586 and 2047 Hz around the two rotational axes, thereby generating maximum twisting angles of ±7.28° and ±5.63°, respectively, under two square waves of 40 V. These characteristics confirm the validity of our design and satisfy the requirements of a laser projector with VGA standards. The design of a two-dimensional high-frequency electrostatic microscanner is presented, and an improved method for routing isolation trenches is investigated to increase the reliability and mechanical stability of the resulting device. A sample device is fabricated and tested using an optimized micromachining process. Measurement results indicate that the sample device oscillates at inherent frequencies of 11586 and 2047 Hz around the two rotational axes, thereby generating maximum twisting angles of ±7.28° and ±5.63°, respectively, under two square waves of 40 V. These characteristics confirm the validity of our design and satisfy the requirements of a laser projector with VGA standards.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第11期79-82,共4页 中国光学快报(英文版)
基金 supported by the National Natu-ral Science Foundation of China(Nos.51375399 and 51375400) the New Generation Information Tech-nology Development Foundation of Shenzhen(No.JCYJ20120614154203639) the NPU Foundation for Fundamental Research(No.JCY20130119)
关键词 ELECTROSTATICS
  • 相关文献

参考文献15

  • 1Y. Liu, W. Yuan, D. Qiao, L. Shi, and X. Guo, Chin Opt. Lett. 11, 062301 (2013).
  • 2M. Scholles, A. Brauer, Ig. Fi'ommhagen, C. Gerwig B. Hoofer, E. Jung, H. Lakner, H. Schenk, B. Schneider P. Schreiber, and A. Wolter, Proc. SHE 5873, 72 (2(105).
  • 3Y. C. Ko, J. W. Cho, Y. K. Mun, H. G. Jcong, W. K Choi, J. H. Lee, J. W. Kim, J. B. Yoo, and J. H. Lee Sens. Actuators A: Phys. 126, 218 (2006).
  • 4H. Urey, D. Wine, and T. Osborn, Proc. SPIE 4178, 176 (2000).
  • 5M. Scholles, A. Br:uer, K. Frommhagena, C. Gerwiga, H. Lakner, H. Schenka, and M. Schwarzenberga, Proc. SPIE 6466, 64660A (2007).
  • 6H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, IEEE/ASME J. Microelec tromech. Syst. 16, 969 (2007).
  • 7Y. Sabry, D. Khalil, B. Saadany, and T. Bourouina, Opt. Express 21, 13906 (2013).
  • 8A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, J. Microelectromech. Syst. 15, 786 (2006).
  • 9C. H. Ji, M. Choi, S. C. Kim, K. C. Song, J. U. Bu, and H. J. Nam, J. Microelectromech. Syst. 16, 1124 (2007).
  • 10H. Schenk, P. Diirr, D. Kunze, H. Lakner, and H. Kiick, Sens. Actuators A: Phys. 89, 104 (2001).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部