期刊文献+

Refractive index and temperature sensor based on cladding-mode Bragg grating excited by abrupt taper interferometer 被引量:3

Refractive index and temperature sensor based on cladding-mode Bragg grating excited by abrupt taper interferometer
原文传递
导出
摘要 A sensing structure consisting of an abrupt taper spliced uniformly in to a fiber Bragg grating (FBG) is proposed and experimentally demonstrates refractive index (RI) and temperature measurements. Cladding modes are generated in the fiber through the abrupt taper containing the FBG. Most modes are reflected by the FBG at shorter wavelengths and reenter the launch fiber after passing through the abrupt taper. Spectral integrals are used to measure the power generated by the cladding and core modes. A sensitivity of-83.97 nW/RIU for ambient RI and a temperature sensitivity of 10 pm/℃ are obtained. No cross- sensitivity problems exist between ambient RI and temperature measurement. A sensing structure consisting of an abrupt taper spliced uniformly in to a fiber Bragg grating (FBG) is proposed and experimentally demonstrates refractive index (RI) and temperature measurements. Cladding modes are generated in the fiber through the abrupt taper containing the FBG. Most modes are reflected by the FBG at shorter wavelengths and reenter the launch fiber after passing through the abrupt taper. Spectral integrals are used to measure the power generated by the cladding and core modes. A sensitivity of-83.97 nW/RIU for ambient RI and a temperature sensitivity of 10 pm/℃ are obtained. No cross- sensitivity problems exist between ambient RI and temperature measurement.
机构地区 Department of Physics
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第12期22-25,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61377087 and 61077006) Shaanxi Province Natural Science Foundation Research Project(No.S2010JC3655) Northwest University Postgraduate Innovative Talents Training Project(No.YZZ12085)
关键词 Fiber Bragg gratings Temperature measurement Fiber Bragg gratings Temperature measurement
  • 相关文献

参考文献16

  • 1O. S. Wolfbeis, Anal. Chem. 76, 3269 (2004).
  • 2M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Anal. Chem. 72, 289,5 (2000).
  • 3D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, Elec- tron. Lett. 42, 324 (2006).
  • 4J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, Opt. Eng. 52, 014404 (2013).
  • 5P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Vusano, IEEE Photon. Technol. Lett. 17, 1713 (2005).
  • 6Y. Cao, Y. Yang, X. Yang, and Z. Tong, Chin. Opt. Lett. 10, 030605 (2012).
  • 7Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, IEEE Photon. Technol. Lett. 19, 880 (2007).
  • 8S. K. AbiKaedBey, C. C. Lam, T. Sun, and K. T. V. Grattan, Sens. Actuators. A 141, 390 (2008).
  • 9X. Fang, C. Liao, and D. Wang. Opt. Lett. 35, 1007 (2010).
  • 10P. Lu, L. Men, and Q. Chen, IEEE Sensor. J. 9, 340 (2009).

同被引文献27

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部