期刊文献+

Enhanced NIR emission in Ce^(3+)/Er^(3+)-doped YAG induced by Bi^(3+) doping

Enhanced NIR emission in Ce^(3+)/Er^(3+)-doped YAG induced by Bi^(3+) doping
原文传递
导出
摘要 Ce^3+/Er^3+/Bi^3+ triply-doped yttrium aluminum garnet (YAG) is synthesized using co-precipitation method. The Bi^3+ concentration-dependent near-infrared (NIR) emission behavior is systemically in- vestigated. The NIR emission of Er^3+ ions at 1531 nm is enhanced threefold by the addition of 7 mol% Bi^3+. Bi^3+doping results in the formation of exciton in YAG and the variation in the local environment of the doped rare-earth ions. The enhancement in NIR luminescence is ascribed to the combined effects of the sensitization of exciton→Ce^3+ →Er^3+ and the Bi^3+ doping-induced adjustment of the local environment for Ce^3+ and Er^3+ ions. Ce^3+/Er^3+/Bi^3+ triply-doped yttrium aluminum garnet (YAG) is synthesized using co-precipitation method. The Bi^3+ concentration-dependent near-infrared (NIR) emission behavior is systemically in- vestigated. The NIR emission of Er^3+ ions at 1531 nm is enhanced threefold by the addition of 7 mol% Bi^3+. Bi^3+doping results in the formation of exciton in YAG and the variation in the local environment of the doped rare-earth ions. The enhancement in NIR luminescence is ascribed to the combined effects of the sensitization of exciton→Ce^3+ →Er^3+ and the Bi^3+ doping-induced adjustment of the local environment for Ce^3+ and Er^3+ ions.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第12期76-79,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.61233010 and 51372214) the Hunan Provincial Natural Science Foundation of China(No.12JJ3063) the Open Project of State Key Laboratory of Rare Earth Resources Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Science(No.RERU2013017)
  • 相关文献

参考文献23

  • 1J.Meng,K.W.Cheah,Z.Shi,andJ.Li,Appl.Phys.Lett.91,151107(2007).
  • 2V. G. Babajanyan, R. B. Kostanyan, and P. H. Muzhikyan, J. Phys. 350, 012024 (2012).
  • 3L. H. Stooff, A. Van Blaaderen, A. Polman, G. A. Heb- bink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys. 91, 3955 (2002).
  • 4Q. Wang, L. Su, H. Li, L.Zheng, X. Xu, H. Tang, X. Guo, D. Jiang, and J. Xu," Phys. Status Solidi A 208, 2839 (2011).
  • 5Y. Chen, Y. Lin, H. Zhu, G. Zhang, and Y. Huang, Chin. Opt. Lett. 10, 021403 (2012).
  • 6V. G. Babajanyan, R. B. Kostanyan, P. H. Muzhikyan, A. G. Petrosyan, J. Contemp. Phys. 46, 54 (2011).
  • 7X. Wang, H. Mao, C. Ma, J. Xu, and X. Zeng, Chin. Opt. Lett.10, 071601 (2012).
  • 8A. L. Denisov, A. F. Umyskov, and I. A. Shcherbakov, Sov. J. Quantum Electron19, 167 (1992).
  • 9Y. Yu, S. Zhang, S. Tie, and M. Song, J. Alloys Comp. 217, 148 (1995).
  • 10J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, Phys. Chem. Chem. Phys. 12,13759 (2010).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部