期刊文献+

大规模互联网图像检索与模式挖掘 被引量:16

Large-scale web image search and pattern mining
原文传递
导出
摘要 在互联网时代,爆炸式增长的数字图像不仅给图像检索带来巨大的技术挑战,同时也带来了很多机遇和研究问题的新思路.本文简单回顾了图像检索的三个阶段的研究历史,以及在此过程中数据量的增多给图像检索带来的影响,并对作为关键问题的特征提取方面的研究进行了深入的分析.本文尤其指出视觉模式挖掘是寻找中层特征表示并缩小语义鸿沟的重要研究方向,并根据视觉模式的表征粒度将其分为五种类别分别进行了介绍,从中可以看到大数据对于视觉模式挖掘的重要作用. The explosive growth of web images not only brings many technical challenges to image search, but also provides almost unlimited training data and new ideas to various computer vision problems. This paper presents a brief historical review of three stages of image retrieval, with a particular emphasis on the impact of large-scale web images to image retrieval. Based on the review, the paper discusses the fundamental problem of feature extraction in image retrieval, and the recent research trend on visual pattern mining to bridge the semantic gap. According to their representation granularity, the paper divides visual patterns into five categories and introduces their related work respectively, which also shows the great importance of big data to visual pattern mining.
作者 张磊
出处 《中国科学:信息科学》 CSCD 2013年第12期1641-1653,共13页 Scientia Sinica(Informationis)
关键词 图像检索 视觉模式 模式挖掘 内容分析 大数据 image retrieval, visual pattern, pattern mining, content analysis, big data
  • 相关文献

参考文献49

  • 1Zhang L, Rui Y. Image search from thousands to billions in 20 years (to appear). ACM Trans Multimedia Comput Commun Appl, 2013.
  • 2Jain R. NSF workshop on visual information management systems. SIGMOD Record, 1993, 22: 57-75.
  • 3Rui Y, Huang T, Ortega M, et al. Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans Circuits Syst Video Technol, 1998, 8: 644-655.
  • 4Wang J. Encyclopedia of Data Warehousing and Mining. 2nd Ed. Hershey: IGI Global, 2009. 758-763.
  • 5Wang J, Hua X. Interactive image search by color map. ACM Trans Intell Syst Technol, 2011, 3: 12.
  • 6Cao Y, Wang H, Wang C, et al. Mindfinder: interactive sketch-based image search on millions of images. In: Proceedings of ACM International Conference on Multimedia, Florence, 2010. 1605-1608.
  • 7Zha Z, Yang L, Mei T, et al. Visual query suggestion. In: Proceedings of ACM International Conference on Multimedia, Beijing, 2009. 15-24.
  • 8Niblack C, Barber R, Equitz W, et al. The QBIC project: querying images by content using color, texture, and shape. In: Proceedings of IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology, San Jose, 1993. 173-187.
  • 9Ma W Y, Manjunath B. NETRA: a toolbox for navigating large image databases. In: Proceedings of International Conference on Image Processing, San Antonio, 1997. 568-571.
  • 10Smith J R, Chang S F. VisualSEEk: a fully automated content-based image query system. In: Proceedings of ACM International Conference on Multimedia, Seattle, 1997. 87-98.

同被引文献127

引证文献16

二级引证文献591

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部