期刊文献+

冷热双蓄太阳能喷射—压缩耦合制冷系统性能分析 被引量:2

Analysis of Performance of Solar Injection-compression Coupled Refrigeration System with Both Cold and Heat Storage
原文传递
导出
摘要 本文提出了一种冷热双蓄太阳能喷射—压缩耦合制冷系统,并建立了相应的数学模型。该系统以R141b为制冷工质,太原地区的气象参数作为输入,结合TRNSYS软件进行了建筑模拟和系统的仿真计算,全面分析了连续典型气象日内系统的运行情况及热性能。结果表明,太阳能集热器有用能不为零时,集热器效率随太阳辐射强度同增减;拓宽太阳能喷射制冷系统在最大喷射系数下的运行时间,可以增加系统的制冷量;系统的制冷量在与用户冷负荷需求达到平衡的状态下,系统更加有效的利用了太阳能;在连续典型气象日内,太阳能喷射制冷子系统可为用户提供59.3%的冷量,系统与传统的蓄热型太阳能喷射—压缩联合制冷系统相比可节约132 863 kJ电能,综合性能系数COP0可达0.253。 This paper proposed solar injection-compression coupled refrigeration system with both cold and heat storage, and constructed the corresponding mathematical model. This system used R141b as refrigerant,input meteorological parameters in Taiyuan, and combined TRNSYS simulation software for building simulation and simulation computation of the system, and conducted a comprehensive analysis of operation and thermal performance of the system during consecutive typical meteorological days. The results show that when useful energy in solar collector is not zero, collection efficiency of collector changed with intensity of solar radiation; extension of operating time of solar ejection refrigeration system under maximum injection coefficient could increase the system's refrigerating capacity ; refrigerating capacity of the system uses more efficiently solar energy when it reached its balance together with the user's cooling load demand; during the consecutive typical meteorological days, solar ejection refrigeration subsystem can provide the user with 59.3% of the refrigeration capacity,and compared with conventional solar injection-compression coupled refrigeration system with heat storage,this system can save 132 863 KJ electric energy,whose COPo can reach 0. 253.
出处 《建筑科学》 北大核心 2013年第12期114-119,共6页 Building Science
基金 国家自然科学基金项目(50976074)
关键词 蓄热 喷射-压缩 TRNSYS 仿真计算 蓄冷 heat storage, injection-compression, TRNSYS, simulation computation, cold storage
  • 相关文献

参考文献19

  • 1田琦,张于峰,陈冠益,周国兵.冷暖联供太阳能喷射制冷系统的一次能耗[J].太阳能学报,2004,25(6):826-831. 被引量:6
  • 2HUANG B J, CHANG J M, PERRENKO V A, et al. A solar ejector cooling system using refrigerant R 141 b [ J ]. Solar Energy, 1998,64 (4/5/6) :223-226.
  • 3方承超,赵军,徐律,郑宗和,齐锡龄.利用低焓能的压缩—喷射制冷系统的研究[J].工程热物理学报,1995,16(1):5-8. 被引量:15
  • 4张于峰,李灿华,孙苹,涂光备.新型喷射制冷循环的研究[J].工程热物理学报,1999,20(4):405-409. 被引量:14
  • 5SOKOLOV M, HERSH GAL D. Optimal coupling and feasibility of a solar powered by year round ejector air conditioner[ J]. Solar Energy, 1993,50 ( 6 ) :507-516.
  • 6Cizungu K ,Mani A ,Groll M. Performance comparison of vapor jet refrigeration system with environment friendly working fluids[ J]. Applied Thermal Engineering,2001,21 (5) :585-598.
  • 7Sun D W,Eames I W. Recent developments in the design theories and applications of ejectors - a review [ J ]. Journal of the Institute of Energy, 1995,68 (475) :65-79.
  • 8Huang B J,Jiang C B ,Hu F L. Ejector performance characteristics and design analysis of jet refrigeration system [ J ]. ASME Transactions Journal of Engineering Gas Turbines Power, 1985, 107 (July) :792-802.
  • 9Huang B J, Chang J M, Petrenko V A, et al. A solar ejector cooling system using refrigerant Rl41 b [ J ]. Solar Energy, 1998, 64 ( 4/5/6 ) :223 -226.
  • 10Sun D W. Solar powered combined ejector - vapor compression cycle for air conditioning and refrigeration [ J ]. Energy Conversion and Management, 1997,38 ( 5 ) :479-491.

二级参考文献16

  • 1郑爱平.利用低品位热能驱动的喷射式制冷工质[J].化工学报,2008,59(S2):246-250. 被引量:10
  • 2王倩,赵薇,田琦,张于峰.利用低温位热能驱动的喷射制冷系统工质的研究[J].制冷,2006,25(1):35-39. 被引量:4
  • 3BSEN 12975-2-2001,Thermal solar systems and components-Solar collectors-Test methods[S].
  • 4Fischer S,Heidemann W,Mueller-Steinhagen H,et al.Collector test method under quasi-dynamic conditions according to the European Standard[J].Solar Energy,2004,76:117-123.
  • 5Solar Energy Laboratory.TRNSYS user handbook[M].Wisconsin:University of Wisconsin-Madison,2000.
  • 6Duffie John A,Beckman William A.Solar engineering of thermal processes (Third edition)[M].New York:John Wiley & Sons,Inc,2003,12-20.
  • 7[1]Zhang Yufeng, Zhang Limin, Li Canhua , et al . The theoretical research of binary non-azeotropic refrigerant mixtures in ejector refrigeration system[ J]. Transaction of Tianjin University , 1998, 4( 1 ) : 24.
  • 8[3]Mendes L Filipe, Collares-Pereira M, Ziegler F. Supply of cooling and heating with solarassisted absorption heat pumps: an energetic approach [J], Int J Rerig, 1998,21(2): 116-125.
  • 9[2]M K Abuqudais,M A Alnimr.A Theoretical and Experimental Study of MARIXAOLR Air Heater Under Transient Conduction.Int.J.Solar Energy,1996,18(3):137-146
  • 10[3]Chiou J P.The Effect of Non-Uniform Fluid Flow Distribution on The Thermal Performance of Solar Collector.Solar Energy,1982,29(6):437-502

共引文献228

同被引文献24

  • 1白连社,魏邦福,陈开松,鱼剑琳,周梦柳.新型压缩/喷射复合制冷系统理论分析研究[J].电器,2013(S1):527-532. 被引量:2
  • 2严嘉,童明伟,杨鹏.HC290含油工质在水平微肋管内沸腾换热特性及压降的实验研究[J].制冷学报,2005,26(1):5-10. 被引量:7
  • 3李晓伟,孟继安,陈泽敬,李志信.微肋管及强化微肋管换热和阻力实验研究[J].工程热物理学报,2007,28(5):817-819. 被引量:5
  • 4何曙,李勇,李海峰,等.太阳能喷射制冷系统性能模拟及其应用[J].制冷技术,2008,36(6):60-65.
  • 5Li H, Yang H X. Energy and exergy analysis of multi-functional solar assisted heat pump system[J]. International Journal of Low Carbon Technologies, 2010(5) .. 130-136.
  • 6彦启森,石文星,田长青.空气调节用制冷技术[M].3版.北京:中国建筑工业出版社,2009:30-31.
  • 7Selvaraju A, Mani A. Experimental investigation on R134 avapour ejector refrigeration system[J]. Interna- tional Journal of Refrigeration, 2006, 29 ( 7 ) : 1160 - 1166.
  • 8Vidal H, Colle S, et al. Modelling and hourly simulation of a solar ejector cooling system [J]. Applied Thermal Engineering, 2006,26 (7) : 663 - 672.
  • 9Yapici R,Yetisen C C. Experimental study on ejector re-frigeration system powered by low grade heat[J]. Energy Conversion and Management, 2007,48 (5) : 1560 - 1568.
  • 10Petrenko V O, Huang B I, Ierin V O. Design theoretical study of cascade CO2 sub - critical mechanical compres- siorr/butane ejector cooling cycle [J]. International Journal of Refrigeration, 2011,34 : 1649 - 1656.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部