期刊文献+

巴黎期权的PDE定价及隐性差分方法研究 被引量:6

Parisian option's PDE pricing and its implicit difference method
下载PDF
导出
摘要 在假设标的资产价格服从几何布朗运动的基础上,指出了已有文献中关于巴黎期权的偏微分方程(PDE)定价方法存在的问题,给出了正确的边界条件和终值条件,利用方向导数将该三维PDE降为二维PDE.进而运用隐性差分方法为巴黎期权定价.并将其与显性差分方法比较,数值结果表明,隐性差分方法绝对稳定,收敛速度快且计算成本较低. Based on the assumptions that the underlying asset price of option follows the Geometric Brownian Motion, this paper corrects the problems existing in Parisian options' PDE pricing in Haber's paper, explores the right boundary and terminal conditions and employs the directional derivatives to transform three dimensional PDE to two dimensional PDE. This paper used the ing. Comparing the numerical results with explicit stable, fast convergence and low computation cost. implicit finite difference method for Parisian option pric- finite difference method, the proposed method is absolute
出处 《系统工程学报》 CSCD 北大核心 2013年第6期764-774,共11页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(71203247 70971145) 教育部重点科研基金资助项目(11yjc790015)
关键词 巴黎期权 偏微分方程 方向导数 隐性差分 绝对稳定性 Parisian option partial differential equations directional derivatives implicit finite difference absolute stability
  • 相关文献

参考文献14

  • 1Chesney M, Jeanblanc-Picque M, Yor M. Brownian excursions and Parisian barrier options [J]. Advances in Applied Probabil-ity, 1997,29(1): 165-184.
  • 2Labart C, Lelong J. Pricing double barrier Parisian options using Laplace transforms[J]. International Journal of Theoretical andApplied Finance, 2009,12(1): 1944.
  • 3Hugonnier J. The Feynman-Kac formula and pricing occupation time derivatives [J]. International Journal of Theoretical and AppliedFinance, 1999,2(2): 153-178.
  • 4Haber J, Schonbucher J, Wilmott P. Pricing Parisian options[J]. The Journal of Theoretical and Applied Finance, 1999,6(3): 71-79.
  • 5Zhu P, Chen T. Pricing Parisian and Parisian options analytically[C] // The 7th Bacheiier Finance Society World Congress. Sydeney:2012.
  • 6罗俊,吴雄华.巴黎期权定价问题的数值方法[J].数值计算与计算机应用,2004,25(2):81-89. 被引量:6
  • 7Anderluha M. Pricing Parisians and barriers by hitting time simulation[J]. The European Journal of Finance, 2008,14(2): 137-156.
  • 8Hull J, White A. Efficient procedures for valuing european and american path-dependent options[J]. The Journal of Deriva-tives, 1993,1(1): 21-31.
  • 9Boyle P, Broadie M, Glasserman P. Monte Carlo methods for security pricing[J]. Journal of Economic Dynamics and Con-trol, 1997,21(8/9): 1267-1321.
  • 10Costabile A. Combinatorial approach for pricing parisian options [J]. Decisions in Economics and Finance, 2002,25(2): 111-125.

二级参考文献41

  • 1邵斌,丁娟.GARCH模型中美式亚式期权价值的蒙特卡罗模拟算法[J].经济数学,2004,21(2):141-148. 被引量:5
  • 2郑振龙,林海.中国违约风险溢酬研究[J].证券市场导报,2003(6):41-44. 被引量:27
  • 3Ingersoll J. A contingent claim valuation of convertible securities[ J]. Journal of Financial Economics, 1977, 4 : 289-322.
  • 4Brennan M J, Schwartz E S. Convertible bonds : Valuation and optimal strategies for call and conversion [ J ]. Journal of Finanee, 1977, 32(6): 1699-1715.
  • 5Nyborg K G. The use and pricing of convertible bonds[J]. Applied Mathematical Finance, 1996, 3(3) : 167-190.
  • 6Brennan M J, Schwartz E S. Analyzing convertible bonds [ J ]. Journal of Financial and Quantitative Analysis, 1980, 15 (4) : 907-929.
  • 7Vasicek O A. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5: 177-188.
  • 8Carayannopoulos P. Valuing convertible bonds under the assumption of stochastic interest rates: An empirical investigation [ J]. Quarterly Journal of Business and Economics, 1996, 35 (3) : 17-31.
  • 9Cox J, Ingersoll J E, Ross S. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2) : 385-467.
  • 10Lvov D, Yigitbasioglu A B, Bachir N E. Pricing Convertible Bonds by Simulation[C]. Working Paper, ISMA Center, 2004.

共引文献20

同被引文献44

  • 1Longstaff F,Schwartz E.Valuing American Options by Simulation: A Simple Least-Squares Approach[].Review of Finance.2001
  • 2Carole Bernard,Phelim Boyle.Monte Carlo methods for pricing discrete Parisian options[J]. The European Journal of Finance . 2011 (3)
  • 3Marc Chesney,Laurent Gauthier.American Parisian options[J]. Finance and Stochastics . 2006 (4)
  • 4Kwok K,Lau W.Pricing algorithms for options with exotic path dependence. Journal of Derivatives . 2001
  • 5Hull J,White A.Efficient procedures for valuing European and American path-dependent options. Journal of Derivatives . 1993
  • 6Jetley G,Gustafson M.A hybrid approach to valuing American parisian options. SSRN 998599 . 2007
  • 7Jason D.The Timing of Initinal Public Offers:A Real Option Approach[R].New Haven:Yale University,2000.
  • 8Chen Can,Chen Zhuming.Optimal Timing and Equilibrium Pricing for IPOs[C]// The International Conference on Applied Statis- tics and Financial Mathematics,Hong Kong,2010.
  • 9Benninga S,Helmantel M,Sarig O.The timing of initial public offerings[J].Journal of Financial Economics,2005,75(1):115-132.
  • 10Aydogan A.IPO market timing[J].The Review of Financial Studies,2005,18(3):1105-1138.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部