期刊文献+

基于多级降维处理的路面裂缝图像自动识别算法 被引量:1

Automatic Recognition Algorithm of Pavement Cracking Using Image Processing Based on Multi-layer Dimensionality Reduction
原文传递
导出
摘要 针对路面裂缝图像识别难以适应图像背景的复杂性、去噪效果不佳和存在较多断续边缘的情况,提出了基于多级降维处理的自动识别算法,主要有5个部分:(1)融合灰度和梯度信息的图像预处理;(2)局部OTSU分割;(3)基于连通性检测的二值图像去噪;(4)基于8方向Sobel梯度的像素连接;(5)8×8裂缝子块识别与去噪。随后,测试实例显示,算法通过5个分辨率层级的图像处理,可获得完整而连续的裂缝图像。最后,针对10张512×512的路面破损图片,对全局OTSU分割、8方向Sobel检测、Canny算子和文中算法进行测试,各算法综合性能指标F1值依次为77.31%、19.58%、20.21%和91.04%,准确率依次为68.10%、25.82%、38.57%和85.78%,召回率依次为89.74%、16.04%、14.25%和97.71%,体现了文中算法的优越性。 Aiming at the fact that image recognition of pavement cracking tends to have a failure in fitting for the complexity of image background, a poor denoising effect and broken edges, an automatic image recognition algorithm based on multi-layer dimensionality reduction is proposed, which has five main parts. (1) image pre-processing combining grayscale with gradient information; (2) local OTSU segmentation; (3) binary image denoising based on connectivity checking; (4) pixel connecting on the basis of 8-direction Sobel gradients; and (5) recognition and denoising of 8×8 cracking subimages. Then, test example shows that the algorithm can obtain unbroken and continuous cracks through processing of images with 5 resolution grades. At last, performance tests are carried out on ten 512 × 512 pavement images for global OTSU segmentation, 8-direction Sobel detection, Canny detection and the algorithm proposed above, from which the F1 (comprehensive performance index) values come out as 77.31%, 19.58%, 20.21% and 91.04%, Precisions are 68. 10%, 25.82%, 38.57% and 85.78%, and Recalls are 89.74%, 16.04%, 14.25% and 97.71%, for each of the algorithms sequentially, which indicates a outstanding performance of this algorithm.
出处 《公路》 北大核心 2013年第12期1-7,共7页 Highway
基金 中央高校基本科研业务费专项资金科技创新项目 项目编号A0920502051208-99 国家自然科学基金 项目编号51108391 综合运输四川省重点实验室开放基金 项目编号B01C0801
关键词 路面裂缝 图像识别 降维处理 去噪算法 连通性检测 裂缝子块 pavement cracking image recognition dimensionality reduction denoising algorithm connectivity checking cracking subimage
  • 相关文献

参考文献13

二级参考文献25

  • 1肖旺新,张雪,黄卫,严新平.路面破损自动识别的一种新算法[J].公路交通科技,2005,22(11):75-78. 被引量:12
  • 2杜文靖,朱少辉,刘玉臣.高等级沥青公路路面裂缝图像处理技术[J].建设机械技术与管理,2006,19(3):65-68. 被引量:1
  • 3余天洪,贾阳,王荣本,郭烈.基于熵最大化图像分割的直线型车道标识识别及跟踪方法[J].公路交通科技,2006,23(6):112-115. 被引量:3
  • 4顾兴宇,董侨,倪富健.连续配筋水泥混凝土路面裂缝发展规律研究[J].公路交通科技,2007,24(6):37-40. 被引量:22
  • 5[美]KennethRCastlman著 朱志刚等译.数字图像处理[M].北京:电子工业出版社,2002..
  • 6Siriphan Jitprasithsiri. Develioment of a New Digital Pavement Processing Algorithm for Unified Crack Index Computation[D]. A Dissertation Submitted to the Faculty of the University of Utah, 1997.
  • 7Koutsopoulos H. N. ,Downey A. B. Primitive--Based Classification of Pavement Cracking Images[J]. J. Transp. Engsr. ,1993,19(3) :136-143.
  • 8Chou J C, O Neil W A. Pavement Distress Evaluation Using Fuzzying Logic and Moment Invariants. Transp. Res. Record., 1505, Transportation Research Board, Washington D. C. ,144-148.
  • 9王小丹,吴崇明.基于MATLAB的系统分析与设计-图像处理[M].西安:西安电子科技大学出版社,2000.
  • 10Kelvin C P W,Robert P E.Investigation of image archiving for pavement surface distress surface distress survey[R].Mack-Blackwell Transportation Center,University of Arkansas,Fayetteville,July 1999.

共引文献100

同被引文献14

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部