期刊文献+

适用于浸入边界法的大涡模拟紊流壁面模型 被引量:6

A turbulence wall layer model for large eddy simulation using immersed boundary method
下载PDF
导出
摘要 基于近壁定常剪切应力假设,提出了一种新的适用于浸入边界法的大涡模拟紊流壁面模型。通过引入壁面滑移速度,修正了线性速度剖面计算得到的壁面剪切应力,使之满足Werner-Wengle模型。将其应用于平板紊流和高Re数圆管紊流的数值模拟,对比采用和不采用壁面模型的结果得知,采用此模型的速度剖面与实验值吻合良好,验证了此模型的有效性。研究了不同欧拉/拉格朗日网格相对位置对结果的影响,证明了此模型具有较好的鲁棒性,以及可根据局部流动状态和网格精度自动开闭的特点。 A novel turbulence wall layer model suitable for large eddy simulation using immersed boundary method is presented based on the hypothesis of constant shear stress in the near wall region.A slip velocity is introduced to modify the wall shear stress calculated using a linear velocity profile on the purpose of verifying the Werner-Wengle model.Results from the simulations of high-Re turbulent flow over a plate and in a pipe show that the velocity profile obtained using the wall layer model agrees well with the experimental data,which provides strong evidences of the good accuracy and fidelity of the method.Simulations with different relative positions of the Eulerian/Lagrangian grids were carried out and their influence on the accuracy was investigated.Robustness and the feature of switching on/off automatically according to the surrounding flow state and grid resolutions of the model were confirmed.
出处 《计算力学学报》 CAS CSCD 北大核心 2013年第6期828-833,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金创新研究群体科学基金(51021004) 天津市青年科学基金(12JCQNJC02600)资助项目
关键词 紊流壁面模型 浸入边界法 大涡模拟 wall layer model immersed boundary method large eddy simulation
  • 相关文献

参考文献3

二级参考文献79

  • 1Schmid-Schonbein H, Wells R. Fluid drop-like transition of erythrocytes under shear[J]. Science, 1969, 165:288-291.
  • 2Fischer T M, Stohr-liesen M, Schmid-Schonbein H. The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow[J]. Science, 1978, 202: 894-896.
  • 3Kholef I A, Weymann H D. Motion of a single red blood cell in plane shear flow[J]. Biorheology, 1974, 11: 337-348.
  • 4Sugihara M, Niimi H. Numerical approach to the motion of a red blood cell in Couette flow[J]. Biorheology, 1984, 21:734- 749.
  • 5Nimmi H, Sugihara M. Cyclic loading on the red cello membrane in a shear flow: a possible cause of hemolysis[J]. J Biomeeh Eng, 1985, 107: 91-95.
  • 6Zahalak G I, Rao P R, Sutera S P. Large deformation of a cylindrical liquid-filled membrane by a viscous shear flow[J]. J Fluid Mech, 1987, 179: 283-305.
  • 7Keller S R, Skalak R. Motion of a tank-treading ellipsoidal particle in a shear flow[J]. J Fluid Mech, 1982, 120:27-47.
  • 8Sutera S P, Pierre P R, Zahalak G. I. Deduction of intrinsic mechanical properties of the erythrocyte membrane from observations of tank-treading in the rheoseope[J]. Biorheology, 1989, 26: 177-197.
  • 9Barthes-Biesel D, Rallison J M. The time-dependent deformation of a capsule freely suspended in a linear shear flow[J]. J Fluid Mech, 1981, 113.-251-267.
  • 10Barthes-Biesel D, Sgaier H. Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow[J]. J Fluid Mech, 1985,160:119-135.

共引文献28

同被引文献38

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部