期刊文献+

条件自回归expectile模型及其在基金业绩评价中的应用 被引量:12

New Insight into Application in Mutual Funds' Performance Evaluation on Conditional Auto Regressive Expectile Models
原文传递
导出
摘要 本文研究了日收益率之下开放式基金的业绩评价和检验问题,提出了改进的条件自回归expectile(CARE)模型并应用到基金业绩评价的问题研究中。首先运用非对称最小二乘法(ALS)对动态的CARE模型进行半参数估计,得到样本基金收益率序列的VaR值和ES值。其次,使用计算结果对样本基金的日收益率进行风险调整,得到基于VaR和ES修正的Sharpe比率。最后,在实证研究中,本文使用传统的Sharpe比率、基于VaR和ES的Sharpe比率对我国56只开放式基金在2005-2011年间的业绩进行了实证分析,结论显著证明了CARE模型在极端风险度量上更精确,在基金评价和检验中的应用中是可行的。 Performance measurement is one of the most important issues in the research of mutual funds. The problems of performance evaluation and tests in the open-end mutual funds are studied in this paper, using daily returns. Conditional AutoRegressive Expectile (CARE) models are creatively introduced into the problem of evaluation of mutual funds' performance. Firstly, asymmetric least squares (ALS) method is applied to estimate the parameters in those CARE Models, and then the results are used to create autoregressive VaR model and conditional ES model to calculate the values of VaR and ES of our sample funds. Secondly, the values of VaR and ES are used to conduct risk-adjustment on the standard deviation, and thus the amended Sharpe ratios are obtained, which are based on VaR and ES. Finally, in empirical study, 56 domestic open-end funds in China are selected as samples, from 2005 to 2011. Empirical analysis are made on the evaluation and ranking of three measures of performance, including the traditional Sharpe ratio, VaR-based Sharpe Ratio and ES-based Sharpe ratio. The results prove CARE models can measure extreme risk much more accurately and thus can be very feasible to the evaluation and test in mutual funds.
作者 苏辛 周勇
出处 《中国管理科学》 CSSCI 北大核心 2013年第6期22-29,共8页 Chinese Journal of Management Science
基金 上海财经大学研究生创新基金项目(CXJJ-2010-348) 国家杰出青年基金项目(70825004) 自然科学基金委项目(71271128) 国家数学与交叉科学中心的资助项目
关键词 Sharpe比率 非对称最小二乘法 条件自回归expectile模型 VAR ES Sharpe ratio asymmetric least squares conditional autoregressive expectile models VaR ES
  • 相关文献

参考文献13

  • 1Newey W K,Powell J L. Asymmetric least squares estimation and testing[J].{H}ECONOMETRICA,1987,(04):819-847.
  • 2Jones M C. Expectiles and m-quantiles are quantiles[J].{H}Statistics & Probability Letters,1994,(02):149-153.
  • 3Yao Qiwei,Tong H. Asymmetric least squares regression estimation:A nonparametric approach[J].Nonparametric Statistics,1996,(2-3):273-292.
  • 4Efron B. Regression percentiles using asymmetric squared error loss[J].{H}Statistica Sinica,1991.93-125.
  • 5Kuan C M,Yeh J H,Hsu Y C. Assessing value at risk with CARE,the condional auto regressive expectile models[J].{H}Journal of Econometrics,2009,(02):291-270.
  • 6Taylor J W. Estimating value at risk and expected shortfall using expectiles[J].Journal of Financial Econometrics,2008,(02):231-252.
  • 7Aigner D J,Amemiya T,Poirier D J. On the estimation of production frontiers:Maximum likelihood estimation of the parameters of a discontinuous density function[J].{H}International Economic Review,1976,(02):377-396.
  • 8Engle R F,Manganelli S. CAViaR:Conditional autoregressive value at risk by regression quantiles[J].{H}Journal of Business and Economics Statistics,2004,(04):367-381.
  • 9Kuester K,Mittnik S,Paolella M S. Value-at-risk pre diction:A comparison of alternative strategies[J].Journal of Financial Econometrics,2006,(01):53-89.
  • 10Koenker R W,Bassett G W. Regression quantiles[J].{H}ECONOMETRICA,1978,(01):33-50.

二级参考文献25

  • 1冯春山,吴家春,蒋馥.应用半参数法计算石油市场风险价值[J].湖北大学学报(自然科学版),2004,26(3):213-217. 被引量:5
  • 2潘慧峰,张金水.用VaR度量石油市场的极端风险[J].运筹与管理,2006,15(5):94-98. 被引量:12
  • 3Koenker R, Bassett G, Regression quantiles [J]. Econ- ometrica, 1978, 46.. 33-50.
  • 4Koenker R. Quantile regression [M]. Cambridge.- Cam- bridge University Press, 2005.
  • 5Koenker R, Xiao Zhijie. Quantile autoregression [J]. Journal of the American Statistical Association, 2006, 101(475) : 980-990.
  • 6Engle R F, Mangaelli S. CAViaR: Conditional autore- gressive value at risk by regression quantiles [J]. Jour- nal of Business & Economic Statistics, 2004, 22 (4) : 367-381.
  • 7Giot P, Laurent S. Market risk in commodity markets: A VaR approach [J]. Energy Economics, 2003, 25 (5) : 435-457.
  • 8Costello A, Asem E, Gardner E. Comparison of histor- ically simulated VaR.. evidence from oil prices [J]. En- ergy Economics, 2008, 30(5).. 2154-2166.
  • 9Hung J C, Lee M C, Liu H C. Estimation of value-at- risk for energy commodities via fat-tailed GARCH models [J]. Energy Economics, 2008, 30(3): 1173- 1191.
  • 10Fan Ying, Zhang Yuejun,Tsai H T,Wei Yiming. Esti- mating value at risk of crude oil price and its spillover effect using the GED-GARCH approach [J]. Energy Economics, 2008, 30(6): 3156-3171.

共引文献16

同被引文献94

引证文献12

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部