期刊文献+

Ti对Zn-22Al-xTi钎料及Cu/Al钎焊接头性能的影响(英文) 被引量:8

Effects of Ti on the Brazability of Zn-22Al-xTi Filler Metals as Well as Properties of Cu/Al Brazing Joints
原文传递
导出
摘要 设计并采用Zn-Al-Ti系列钎料对Cu和Al异种金属实施了钎焊,并对Zn-22Al-xTi/Cu界面处的相组成和金属间化合物形貌进行了分析。结果表明:在Zn-22Al中添加0.01%至0.05%的Ti可以显著细化钎料组织,而且Zn-22Al-0.03Ti在Cu基板上的铺展面积比Zn-22Al高出60.4%,但Ti的添加会提高Zn-22Al钎料的熔点和熔化区间。另外,在钎料中添加微量的Ti可以优化Cu/Al接头中Cu侧界面化合物的组织并减小其厚度。相比Zn-22Al钎料,Zn-22Al-0.03Ti钎焊所得Cu/Al接头强度要高出13.4%,而且接头断裂位置由化合物层转移至钎料内部。X射线衍射结果显示,钎焊过程中有CuAl2,Cu9Al4,CuZn 3种化合物产生于钎料与Cu基板界面处。 Noval Zn-AI-Ti filler metals have been designed and used to braze Cu and A1 dissimilar metals. The phase constitutions and morphologies of intermetallic compounds at the Zn-22Al-xTi/Cu interfaces were studied in this paper. The results indicate that, with Ti addition from 0.01 wt% to 0.05 wt%, the microstructure of the Zn-22A1 alloy are refined significantly. The spreading area of Zn-22AI-G.03Ti on Cu substrates increases by 60.4% compared with that of ZA. However, the melting range and melting point of the Zn-22Al-xTi alloys also increase with the addition of Ti. In particular, the addition of trace Ti into the Zn-22AI filler metal can refine the microstructures and decrease the thickness of the interrnetallic compounds layer produced in the Cu/AI brazing. The shear strength of Cu/A1 joint brazed with Zn-22A1-0.03Ti is 13.4% higher than that of the Zn-22A1 filler metal, and the fracture position changes from the interface layer to the matrix of the filler metals. The X-ray diffraction result indicates that the CuAI2, CuZn, and CugA14 phases are produced at the filler metal/Cu substrate interface.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第12期2453-2457,共5页 Rare Metal Materials and Engineering
基金 Project of Scientist and Technician Serve the Enterprise,MOST,China(2009GJC20040)
关键词 Cu Al异种金属 Zn-Al-Ti钎料 钎焊 界面组织 相组成 Cu/Al dissimilar metals Zn-Al-Ti filler metal brazing interracial mierostructure phase constitution
  • 相关文献

参考文献14

  • 1Sahin M. International Journal of Advanced ManufacturingTechnology[J], 2010,49: 527.
  • 2Ouyang J H,Yarrapareddy E, Kovacevic R. Journal of Materials Processing Technology, 2006, 172: 110.
  • 3Abbasia M,Taherib A K, Salehi M T. Journal of Alloys and Compotmds[J],2001,319: 233.
  • 4Lee W B, Bang K S,Jung S B. Journal of Alloys and Com-pounds[J]., 2005,390: 212.
  • 5Mai T A, Spowage A C. Materials Science and Engineering A [J], 2004, 374: 224.
  • 6Kim H J, Lee J Y, Paik K W al. IEEE Transactions on Components and Packaging Technologies[J], 2003, 26: 367.
  • 7Naka M,Hafez K M. Journal of Materials Science[J]. 2003, 38: 3491.
  • 8Xia CZ, LiY J, Puchkov U A et al Vacuum[J]., 2008, 82: 799.
  • 9Xia C Z, Li Y J, Puchkov V A et al Materials Science and Technology[J]., 2009,25: 383.
  • 10Shinozaki K, Koyama K. Materials Science Forum[J], 2007,539: 4075.

同被引文献70

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部