期刊文献+

Mg_(17)Al_(12)基储氢合金的表面复相改性

Multi-phase Surface Modification of Mg_(17)Al_(12)-Based Hydrogen Storage Alloys
原文传递
导出
摘要 采用机械球磨法制备Mg17Al12合金,系统研究了球磨时间对Mg17Al12形成过程的影响;并以球磨12 h的Mg17Al12合金为基体,添加5%、10%(质量分数)的Ni、Cu单质,通过机械球磨对合金进行表面复相改性。采用P-C-T测试仪测定合金的储氢性能,研究添加不同质量分数的单质对Mg17Al12合金储氢性能的影响。结果表明:球磨12 h Mg17Al12的吸氢速率较慢,吸氢时间较长,需在1400 min达到最大吸氢量为4.1%(质量分数),接近其理论吸氢量4.4%,Mg17Al12的吸放氢过程是可逆的。Cu对Mg17Al12进行表面复相改性,可以显著改善其吸氢动力学性能,添加5%Cu和10%Cu的合金在623 K,240 min的吸氢量分别为4.07%和3.9%。经过Cu和Ni复相改性后的Mg17Al12具有较好的放氢性能,添加5%Cu合金在553 K放出3%的氢气。Ni对Mg17Al12进行表面复相改性,对其性能有一定的提高,但是和Cu相比,并不明显。 Mg17Al12 alloys were prepared by mechanical ball milling for systematical studying the influence of milling time on the information of Mg17Al12. In order to modify the surface performances of the alloys, 5% (mass fraction) or 10% of simple substances (Ni and Cu) were added into Mg17Al12 alloys mechanically milled for 12 h. The storage properties of the alloys were determined by P-C-T apparatus. The effects of different mass fraction simple substances on the hydrogen storage properties of the alloys were investigated. The results show that the Mg17Al12 has a slow rate of absorbing hydrogen and a long-term absorption process, the maximum reversible storage capacity reaches 4.1wt% after 1400 min which is closed to the theoretical one (4.4wt%). Cu can modify the surface performance and enhance the kinetics markedly. The alloy with 5%Cu has a hydrogen absorption of 4.07wt% at 623 K in 180 min as the alloy with 10%Cu the hydrogen absorption of 3.9wt%. Mg17Al12 modified by adding Cu and Ni has a better absorption performance, as the alloy with 5% Cu can desorb 3wt% hydrogen at 553 K. Ni can modify the surface performance and enhance the properties, too. But its effect is not obvious compared to that of Cu.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第12期2513-2518,共6页 Rare Metal Materials and Engineering
关键词 储氢合金 MG17AL12 机械球磨 物相分析 吸放氢性能 hydrogen storage alloy Mg17A112 mechanical grinding phaseanalysis hydrogen storage property
  • 相关文献

参考文献16

  • 1Jain I P, Chhagan lal,Ankur Jain. Int J Hydrogen Energy[i], 2010,35:5133.
  • 2Zaluska A, Zaluski L, Strom-olsen J O. Appl Phys [J], 1995, 72: 245.
  • 3Berube V, Radtke G, Dresselhaus M et al. Int J Energy Rev[J], 2007,31:637.
  • 4Reilly J J,Wiswall Jr R H. Inorg Chew[J], 1968,7(11): 2254.
  • 5Chen Yuan(陈玉安),Yang Liling(杨丽玲),Lin Jiajing(林嘉靖) et al. 中国有色金 属学报[J],2010,20(9): 1717.
  • 6Zaluski L, Zaluska. J Alloys Compd[J], 1995,217: 245.
  • 7Yuan Huatang(袁华堂),Feng Yan(冯艳),Song Haonan(宋郝 男)ef al. 材料工程[J],2002,8: 44.
  • 8Bouaricha S, Dodelet J P, Guay D. J Alloy Compd[J]. 2000, 297:282.
  • 9Zhang Q A,Wu H Y. Materials Chemistry and Physics[J], 2005,94(1): 69.
  • 10Chen Yu,an, Yang Liling. Transactions of Nonferrous Metals Society of China[J],2010, 20: 624.

二级参考文献18

  • 1Li Liquan, Akiyama T, Yagi J I. [J]. Intermetallics,1999, 7:671-674.
  • 2Saita I, Li Liquan, Saito K. [J]. Journal of Alloys and Compounds, 2003,356-357: 190-193.
  • 3Akiyama T, Isogai H, Yagi J. [J]. Journal of Alloys and Compounds, 1997,252: L1-L4.
  • 4Li Liquan, Saita I, Saito K. [J]. Intermetallics, 2002,10:927-932.
  • 5Li Liquan, Akiyamab T, Yagia J I. [J]. Intermetallics,1999, 7: 671-677.
  • 6Li L, Akiyama T, Yagi J. [J]. Journal of Materials Synthesis and Processing, 2000,8: 7-14.
  • 7Schlapbach L, Zuttel A. Nature[J], 2001, 414:353
  • 8Bogdanovic B, Hartwing T H, Spliethoff B. Int J Hydrogen Energy[J], 1993, 18:575
  • 9Chen Y, Williams J S. J Alloys Comp[J], 1995, 217:181
  • 10Liang Huot J, Boily S et al. J Alloys Comp[J], 1999, 291:295

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部