期刊文献+

Ni^(2+)替代对LiFePO_4正极材料电化学性能的影响

Effect of Ni^(2+) Substitution on the Electrochemical Performance of LiFePO_4
原文传递
导出
摘要 利用炭热还原法合成了橄榄石型LiFe1-x Nix PO4/C(x=0.0,0.1,0.3,0.5)正极材料,并系统研究了Ni2+替代对材料电化学性能的影响。充放电循环、循环伏安和交流阻抗测试,结果表明Ni2+替代部分Fe2+可以显著改善LiFePO4材料的电化学性能。在0.2 C(1 C=170.0 mA·g-1)电流密度下,LiFe0.9Ni0.1PO4/C的放电比容量达到160 mAh·g-1。LiFe1-x Nix PO4/C电化学性能的改善归因于材料电导率的提高和电荷传输电阻的降低。利用第一性原理对LiFe1-x Nix PO4/C的电子结构进行了研究,结果表明Ni2+的铁位替代能够提高体系的电子电导性。LiFe0.875Ni0.125PO4的结构最稳定,带隙最小,导电性能最好。 LiFez.xNixPO4/C (x=0.0, 0.1, 0.3, 0.5)cathode materials were synthesized by a carbothermal reduction technique and the effect of Ni2+ substitution on the electrochemical perforrnanees were systematically investigated. The results reveal that the cycle performance and electrochemical reversibility of LiFePO4 are remarkably improved with the substitution of Fe2+ ions by Ni2+ ions and LiFeo.gNioAPO4/C demonstrates good electrochemical performances with discharge capacity of 160 mAh'gl at a discharge rate of 0.2 C (1 C=170.0 mA.gl). The improvement of the reversible capacity and the high C-rate performance of LiFePO4 could be attributed to the enhancement of the electronic conductivity and the decrease of the charge transfer resistance. The first-principle calculations were employed to investigate the electronic structures of the LiFel-xNixPO4/C composites. The Lattice parameters, total energies, density of states have were also studies in details. The results show that the electronic conductivity of the Ni2+-doped materials can be improved to certain extent. LiFe0.a75NioA25PO4 has the most stable structure, the smallest band gap and the best conductivity.
机构地区 福建师范大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第12期2563-2569,共7页 Rare Metal Materials and Engineering
基金 国家青年自然科学基金项目(11074032) 国家自然科学基金项目(11074039)
关键词 锂离子电池 LIFEPO4 Ni2+替代 电化学性能 第一性原理计算 Li ion battery LiFePO4 Ni2+-doped electrochemical performance first principle calculation
  • 相关文献

参考文献28

  • 1Wang X,Sone Y, Naito H et al. J Power Sources[J], 2006, 161(1): 594.
  • 2Jugovic D, Uskokovic D,J Power Sources[J], 2009, 190(2): 538.
  • 3Zhang W J. J Power Sources[J]. 2011,196: 2962.
  • 4Liang G, Wang L,Ou X et al, J Power Sources[J]. 2008, 184(2): 538.
  • 5Sun C, Zhou Z,Xu Z et al. J Power Sources[J], 2009,193(2): 841.
  • 6Ge Y,Yan X, Liu J et al. Electrochim Acta[J], 2010,55(20):5886.
  • 7Feng Y. Mater Chem Phys[J].2010, 121(1-2): 302.
  • 8Li Shutang(李树棠).Diffraction Experimental Method(X 射线 衍射方法)[M]. Beijing: Metallurgical Industry Press, 1999: 223.
  • 9Chung S Y,Bloking J T, Chiang Y M. Nat Mater[J]. 2002,1(2): 123.
  • 10Sun C, Zhang Y,Zhang X et al. J Power Sources[J], 2010, 195(11):3680.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部