期刊文献+

算子自定义小波弹性板单元构造及自适应分析

THE CONSTRUCTION OF OPERATOR CUSTOM-DESIGN WAVELET FINITE ELEMENTS AND ADAPTIVE ANALYSIS OF ELASTIC PLATES
原文传递
导出
摘要 提出一类用于分析弹性板问题的算子自定义小波弹性板单元构造方法.该方法的优点在于根据工程问题的求解需要灵活构造具有解耦特性的算子自定义小波基,使得系统多尺度刚阵具有沿对角线的强稀疏性,从而实现了该算法在每个尺度上独立、快速求解,系统方程的求解效率得到较大提高.建立多分辨Lagrange有限元空间和多尺度计算理论,提出基于稳定完备法的算子自定义小波弹性板单元构造方法及解耦条件.依据两尺度相对误差估计,提出自适应算子自定义小波有限元算法.数值算例证明,算子自定义小波弹性板单元具有求解精度与计算效率高等特点. A new construction method of operator custom-design wavelet finite elements is proposed for analyzing elastic plate problems. The superiority of this method is that the decoupling operator custom-design wavelet bases can be constructed conveniently according to the requirements of engineering prob-lems,which leads to highly sparse multi-scale system stiffness matrix along diagonal line. Using the pro-posed algorithm,the independent and fast computation on each level can be easily realized,thus the compu-tational efficiency of system of equations is greatly improved. A multi-resolution Lagrange finite element space and multi-scale computation theory are constructed, and then the building method and decoupling condition of operator custom-design wavelet finite element are presented for the elastic plate problems. Fi-nally,an adaptive operator custom-design wavelet finite element algorithm is proposed according to two-level relative error estimation. Numerical examples show that the present method is accurate and efficient for solving elastic plate problems.
出处 《固体力学学报》 CAS CSCD 北大核心 2013年第6期562-570,共9页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(51205309) 工业装备结构分析国家重点实验室开放课题基金项目(GZ1209) 陕西省科学技术研究发展计划项目(2013JQ7025) 陕西省教育厅科学研究计划项目(2013JK0992)资助
关键词 弹性板 算子自定义小波 解耦 多尺度计算 elastic plate, operator custom-design wavelet, decoupling algorithm, multiscale computa-tion
  • 相关文献

参考文献16

  • 1马军星,王进.弹性地基梁小波有限元分析[J].系统仿真学报,2007,19(10):2183-2185. 被引量:7
  • 2向家伟,陈雪峰,何正嘉.区间B样条小波平面弹性及Mindlin板单元构造研究[J].计算力学学报,2007,24(6):869-875. 被引量:9
  • 3靳露冬,吴艳,王卫卫,任努努,黄鹤羽,陈雪利,韩润强.基于非截断小波有限元的BLT正向问题研究[J].软件学报,2009,20(5):1194-1206. 被引量:2
  • 4Sweldens W, Schroder P. Building Your Own Wave-lets at Home [C]. Wavelets in Computer Graphics,ACM SIGGRAPH Course Notes,1996,15-87.
  • 5Wang Y M, Chen X F,He Z J. A second-generationwavelet-based finite element method for the solutionof partial differential equations [ J ]. Applied Mathe-matics Letters,2012 ,25(11) : 1608-1613.
  • 6Sweldens W. The lifting scheme: a construction ofsecond generation wavelets [ J ]. SIAM Journal ofMathematical Analysis,1997,29 (2) ~511-546.
  • 7Sweldens W. The lifting scheme:a custom-design con-struction of biorthogonal wavelets [J], Applied andComputational Harmonic Analysis, 1996,3(2): 186-200.
  • 8Mehra M . Kevlahan N. An adaptive wavelet colloca-tion method for the solution of partial differential e-quations on the sphere[J]. Journal of ComputationalPhysics,2008,227(11) :5610-5632.
  • 9Carnicer J M,Dahmen W,Pena J M. Local decompo-sition of refinable spaces and wavelets [ J], Appliedand Computational Harmonic Analysis,1996,3 ( 2 ):127-153.
  • 10宓铁良,孙兵兵,杨慧珠.基于第二代小波自适应网格的二维声波方程波传模拟[J].地球物理学报,2009,52(11):2862-2869. 被引量:12

二级参考文献36

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部