期刊文献+

氢气气泡模板电化学诱导沉积纳-微米二级结构钙磷盐生物材料的研究

Study on Hydrogen Bubble Template Fabrication of Porous Biomaterials Coatings by Electrochemically Induced Deposition
下载PDF
导出
摘要 生物材料的多孔结构对于植入后细胞的响应及其与机体组织的有效整合有着决定性的影响.采用电化学沉积方法在钛基表面成功制备多孔钙磷盐及钙磷盐/蛋白质复合膜层.本文选择合适的电解液浓度、温度、电流密度、时间和蛋白质添加剂等,可有效地控制钙磷盐晶体的形状、尺寸和柔韧性,并初步探讨了氢气气泡模板的作用机制.研究结果表明,动态氢气气泡是一种有效的模板,可控制钙磷盐晶体的生长速度,成功构筑纳-微米二级结构钙磷盐生物材料. So far, the pore architecture in biomaterials plays a critical role on the cell response and integration between the biomaterials and implanted environment. In this study, porous calcium phosphate(CaP) coatings and CaP/protein composite coatings have been successfully constructed on titanium substrate by using an electrochemically induced deposition technique. The shape, size and pliability of CaP crystals are controlled by electrolyte concentration, temperature, current density, time and protein additive in preparing process. In addition, the formation mechanism of the porous structure is discussed based on the "hydrogen bubble template" model. It demonstrates that the growth velocity of CaP crystals should match well with the forming-disappearing velocity of hydrogen bubble, and the pliability of the CaP crystals should fit with soft bubble. As a result, dynamic hydrogen bubble can act as an effective template to construct the nano-micro porous structured biomaterials coatings by controlling the growth velocity of CaP crystals.
出处 《电化学》 CAS CSCD 北大核心 2013年第6期501-506,共6页 Journal of Electrochemistry
基金 国家科技支撑计划(No.2012BAI07B09) 国家自然科学基金项目(No.51203108) 江苏省自然科学基金项目(No.BK2011355) 江苏省高校自然科学研究项目(No.11KJB430011)资助
关键词 多孔结构 电化学诱导沉积 气泡模板 生物材料 porous structure titanium electrochemically induced deposition hydrogen bubble template biomaterials
  • 相关文献

参考文献17

  • 1Liu X Y, Paul K C, Ding C X. Surface modification of ti- tanium, titanium alloys, and related materials for biomedi- cal applications[J]. Materials Science and Engineering: R: Reports, 2004, 47(3/4): 49-121.
  • 2Puleo D A, Nanci A. Understanding and controlling the bone-implant interface[J]. Biomaterials, 1999, 20: 2311- 2321.
  • 3Schuler M, Trentin D, Textor M, et al. Biomedical inter-faces: Titanium surface technology for implants and cell carriers[J]. Nanomedicine, 2006, 1 (4): 449-463.
  • 4de Jonge L T, Leeuwenburgh S C G, Wolke J G C, et al. Organic-inorganic surface modifications for titanium im- plant surfaces[J]. Pharmaceutical Research, 2008, 25(10): 2357-2369.
  • 5Cheng X, Filiaggi M, Roscoe S G. Electrochemically as- sisted co-precipitation of protein with calcium phosphate coatings on titanium alloy[J]. Biomaterials, 2004, 25(23): 5395-5403.
  • 6Fan Y, Duan K, Wang R. A composite coating by electrol- ysis-induced collagen self-assembly and calcium phos- phate mineralization[J]. Biomaterials, 2005, 26(14): 1623- 1632.
  • 7Wang H, Lin C J, Hu R, et al. A novel nano-micro struc- tured octacalcium phosphate/protein composite coating on titanium by using an electrochemically induced deposition [J]. Journal of Biomedical Materials Research Part A, 2008, 87(3): 698-705.
  • 8Ren H, Lin C J, Shi H Y, et al. Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca-P electrolyte system[J]. Materials Chemistry and Physics, 2009, 115(2/3): 718-723.
  • 9Zhang Y F, Fan W, Ma Z C, et al. The effects of pore ar- chitecture in silk fibroin scaffolds on the growth and dif- ferentiation of mesenchymal stem cells expressing BMP7 [J]. Acta Biomaterialia, 2010, 6(8): 3021-3028.
  • 10Yan L P, Oliveira J M, Oliveira A L, et al. Macro/microp- orous silk fibroin scaffolds with potential for articularcartilage and meniscus tissue engineering applications[J]. Acta Biomaterialia, 2012, 8(1): 289-301.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部