期刊文献+

力曲线用于硅负极材料表面膜的研究 被引量:1

An Investigation on the Solid Electrolyte Interphase of Silicon Anode for Li-Ion Batteries through Force Curve Method
下载PDF
导出
摘要 利用原子力显微镜(AFM)力曲线模式来研究锂离子电池硅负极材料在含碳酸亚乙烯酯添加剂(VC)电解质首周循环时固态电解质相表面膜(SEI膜)的三维结构.测试表明SEI膜具有多层结构,同时得到SEI膜厚度、杨氏模量以及覆盖度在首周循环过程中的变化,采用三维图呈现了硅材料表面膜的分布. Non-aqueous electrolyte has been widely used in commercial Li-ion batteries. Optimized choices are proceeding among the various types of salts and solvents, in an effort to achieve higher performance of electrolyte. However, the electrolyte will be reduced in low potential and the reductive product will be deposited on the surface of anode to form a passivating layer, solid electrolyte interphase(SEI). Herein an atomic force microscopy(AFM) based method was introduced to study the structure and mechanical property of SEI on silicon thin film anode during the first cycle. Silicon has been known as the most potential candidate anode for next generation of Li-ion batteries. However, large volume change and unstable SEI formation during cycling are needed to be solved before practical application. In this study, the electrolyte was 1 mol·L-1LiPF6(EC:DMC = 1:1) containing 2% vinylene carbonate. Layered-structure such as single layer, double layers and triple layers of SEI were detected, and the Young's Modulus of the SEI was extracted from the force curves. Coverage of SEI was also obtained. A 3-D plot was introduced to real space mapping the formation of SEI on silicon anode at different cycle states.
出处 《电化学》 CAS CSCD 北大核心 2013年第6期530-536,共7页 Journal of Electrochemistry
基金 中科院知识创新工程重要方向项目(No.KJCX2-YW-W26) 国家重点基础研究发展计划(973)项目(No.2012CB932900)资助
关键词 薄膜硅负极 固态电解质相表面膜 原子力显微镜 力曲线 锂离子电池 silicon anode solid electrolyte interphase atomic force microscopy force curve Li-ion batteries
  • 相关文献

参考文献20

  • 1傅焰鹏,陈慧鑫,杨勇.锂离子电池硅纳米线负极材料研究[J].电化学,2009,15(1):56-61. 被引量:8
  • 2Yu He,Xiqian Yu,Geng Li,Rui Wang,Hong Li,Yeliang Wang,Hongjun Gao,Xuejie Huang.Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J].Journal of Power Sources.2012
  • 3Y.H. Wang,Y. He,R.J. Xiao,H. Li,K.E. Aifantis,X.J. Huang.Investigation of crack patterns and cyclic performance of Ti–Si nanocomposite thin film anodes for lithium ion batteries[J].Journal of Power Sources.2011
  • 4Sang-Pil Kim,Adri C.T. van Duin,Vivek B. Shenoy.Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study[J].Journal of Power Sources.2011
  • 5Ivan T. Lucas,Elad Pollak,Robert Kostecki.In situ AFM studies of SEI formation at a Sn electrode[J].Electrochemistry Communications.2009(11)
  • 6Tsutomu Takamura,Shigeki Ohara,Makiko Uehara,Junji Suzuki,Kyoichi Sekine.A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life[J].Journal of Power Sources.2003(1)
  • 7Soon-Ki Jeong,Minoru Inaba,Yasutoshi Iriyama,Takeshi Abe,Zempachi Ogumi.AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries[J].Journal of Power Sources.2003
  • 8D Aurbach,K Gamolsky,B Markovsky,Y Gofer,M Schmidt,U Heider.On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J].Electrochimica Acta.2002(9)
  • 9D Alliata,R K?tz,P Novák,H Siegenthaler.Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes[J].Electrochemistry Communications.2000(6)
  • 10D Aurbach,B Markovsky,M.D Levi,E Levi,A Schechter,M Moshkovich,Y Cohen.New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J].Journal of Power Sources.1999

二级参考文献19

  • 1刘增涛,傅焰鹏,李晨,杨勇.竹节状硅纳米管的制备及锂离子嵌入/脱出性能研究[J].电化学,2006,12(4):363-367. 被引量:6
  • 2Fauteux D, Koksbang R. Rechargeable lithium battery anodes : alternatives to metallic lithium [ J ]. Journal of Applied Electrochemistry, 1993, 23 : 1-10.
  • 3Li H, Huang X J, Chen L Q, et al. A high capacity nano-Si composite anode material for lithium rechargeable batteries[J]. Electrochemical and Solid State Letters, 1999, 2(11) :547-549.
  • 4Yang J, Wachtler M,Winter M, et al. Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries [ J ]. Electrochemical and Solid State Letters, 1999, 2(4) : 161-163.
  • 5Wang C S, Appleby A J, Little F E. Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes [ J ]. Journal of Power Sources, 2001,93 (1- 2) : 174-185.
  • 6Bourderau S, Brousse T, Schleich D M. Amorphous silicon as a possible anode material for Li-ion batteries [ J]. Journal of Power Sources, 1999, 82:233-236.
  • 7Xing W B,Wilson A M,Eguchi K,et al. Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries [ J ]. Journal of the Electrochemical Society, 1997,144(7) : 2410-2416.
  • 8Larcher D, Mudalige C, George A E, et al. Si-containing disordered carbons prepared by pyrolysis of pitch polysilane blends : effect of oxygen and sulfur[ J ]. Solid State Ionics, 1999, 122(1 -4) : 71-83.
  • 9Wang G X, Sun L, Bradhurst D H, et al. Nanoerystalline NiSi alloy as an anode material for lithium-ion batteries [ J ]. Journal of Alloys and Compounds, 2000, 306( 1-2) : 249-252.
  • 10Wang G X, Sun L, Bradhurst D H, et al. Innovative nanosize lithium storage alloys with silica as active centre[J]. Journal of Power Sources, 2000, 88(2) : 278-281.

共引文献7

同被引文献12

引证文献1

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部