期刊文献+

GNSS服务空域空间信号可用性比较与分析 被引量:4

Comparison and Analysis of Signal Availability in the GNSS Service Volume
下载PDF
导出
摘要 通过基本参数对全球卫星导航系统(GPS、GLONASS、Galileo和北斗)空间信号可用性影响实验,得出四系统的A knee值分别为3800km、1100km、3800km和1000km,对应的平均可见卫星数为25、16、22和14/22(亚太地区、MEO星座/混合星座)。分析了三种典型轨道用户的卫星可见性,北斗和GLONASS对MEO和HEO用户的空间信号可用性能较GPS和Galileo稍差,而在LEO用户的应用中,北斗空间信号可用性能却表现最优,平均可见卫星数约为20颗,可用性时间分布比较均匀。最后对GNSS空间有效持续时间段进行统计,随着用户高度的增加,有效持续时间段数增多、总有效持续时间减少;四系统提供全弧段有效服务空间分别为地面至6100km、1600km、6100km和1700km。 Based on the experiments of GNSS signal-in-space availability varying with 0HBW and Ak some results can be concluded: Aknee for GPS, GLONASS, Galileo and BeiDou is 3800km, 1100km, 3800km and 1000km respectively, and the corresponding average number of SVs is 25, 16, 22 and 14/22 ( MEO constellation/Integrated constellation for Asia Pacific region) respectively. Then the satellite visibilities for three typical user orbits are analyzed. Showing that signal availabilities of BeiDou and GLONASS are slightly worse than GPS and Galileo in MEO and HEO user orbits, and in LEO user orbit, BeiDou had the best performance that the average number of SVs is about 20, and the distribution of availability time is even. Lastly GNSS spatial effective continued time segment is analyzed, with the increment of user altitude the number of segments increases and the total effective time decreases. The space domain that GPS, GLONASS, Galileo and BeiDou could supply effective service (100% continued time segments) is from the earth surface to the altitude of 6100km, 1600kin, 6100km and 1700km respectively.
出处 《宇航学报》 EI CAS CSCD 北大核心 2013年第12期1605-1613,共9页 Journal of Astronautics
关键词 全球卫星导航系统 服务空域 空间信号可用性 可见卫星数 GNSS Service volume Signal-in-space availability Number of Visible satellites number
  • 相关文献

参考文献18

  • 1Young L. Meeting space user requirements through evolving PNT services[C]. 4th ICG, St. Petersburg, Russia, Sep 14- 18, 2009.
  • 2Miller J J. Enabling a fully interoperable GNSS space service volume[C]. 6th ICG, Tokyo, Japan, Sep 5-9, 2011.
  • 3Garcia-Rodriguez A. Characteristics for an interoperable GNSS space service volume[ C]. ICG WG-B, Vienna, Austria, June 2012.
  • 4Bauer F H, Moreau M C, Dahle-Melsaether M E, et al. The GPS space service volume [ C ]. 19th ION GNSS, Fort Worth, USA, Sep 26 - 29, 2006.
  • 5Stanton B J, Temple L P, Edgar C E. Analysis of signal availability in the GPS space service volume [ C ]. 19th ION GNSS, Fort Worth, USA, Sep 26 -29, 2006.
  • 6Moreau M, Davis E, Carpenter J R, et al. Results from the GPS flight experiment on the high earth orbit AMSAT AO-40 spacecraft[C]. ION GPS, Portland, USA, Sep 24-27, 2002.
  • 7Kronman J D. Experience using GPS for orbit determination of a geosynchronous satellite [ C ]. Institute of Navigation GPS, Salt Lake City, USA, Sep 19-22, 2000.
  • 8Qiao L, Lim S, Rizos C, et al. GNSS-Based orbit determination for highly elliptical orbit satellites [ C ]. International Symposium on GPS/GNSS, Jeju Island, South Korea, Nov 4 -6, 2009.
  • 9Chibout B, Macabiau C, Escher A C, et al. Investigation of new processing techniques for geostationary satellite positioning [ C]. ION NTM, Monterey, USA, Jan 18 -20, 2006.
  • 10王杰娟,刁华飞,董正宏.32颗GPS卫星星座空间覆盖特性建模与仿真[J].航天控制,2009,27(6):52-55. 被引量:7

二级参考文献14

共引文献24

同被引文献29

  • 1柳敏,赖际舟,黄凯,刘建业,王玮.基于加权奇偶矢量的机载自主完好性监测算法[J].中国惯性技术学报,2015,23(1):43-48. 被引量:4
  • 2MATHIEU J, FANG-CHENG C, STEVEN L, et al. RAIM detector and estimator design to minimize the in- tegrity risk [ C ]/! Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institu- te of Navigation. Tennessee, USA: ION, 2012 : 3856 - 3867.
  • 3OCHIENG W Y, SAUER K, WALSH D, et al. GPS in- tegrity and potential impact on aviation safety [ J ]. The Journal of Navigation, 2003, 56( 1 ) :51 -65.
  • 4RADISIC T, NOVAK D, BUCAK T. The effect of terrain mask on RAIM availability [ J ]. The Journal of Naviga- tion, 2010, 63( 1 ) : 105 - 117.
  • 5MADONNA P, VIOLA S, SFARZO L. NIORAIM algo- rithm applied to a multiconstellation GNSS: Analysis of integrity monitoring performances in various phases of flight[C]//Position Location and Navigation Symposium (PLANS). CA, USA: IEEE, 2010:1258-1263.
  • 6YUN H, KEE Changdon. Multiple-hypothesis RAIM al- gorithm with an RRAIM concept [ J ]. Aircraft Engineer- ing and Aerospace Technology, 2013, 86( l ) :26 -32.
  • 7?ANAGIOTAKOPOULOS D, MAJUMDAR A, OCHIENG W Y. Extreme value theory-based integrity monitoring of glob- al navigation satellite systems [ J ]. GPS Solutions, 2014, 18 : 133 - 145.
  • 8SU Xian-li, ZHAN Xing-qun, NIU Man-cang, et al. Receiver autonomous integrity monitoring (RAIM) per- formances of combined GPS /BeiDou/ QZSS in urban canyon[J]. IEEJ Trans Elec Electron Eng, 2014, 4: 275 - 281,.
  • 9Christophe M, Eric C. Impact of evil waveform on GBAS performance [ C ]. IEEE PLANS 2000, SanDiego California, March 13 - 16,2000.
  • 10Phelts R E. Multicorrelator techniques for robust mitigation of threats to GPS signal quality [ D ]. California: Standford University, Ph. D. thesis, 2001.6.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部