期刊文献+

重尾分布二阶参数的半参数估计

Semi-parameter estimation of second order parameter for heavy-tailed distribution
原文传递
导出
摘要 重尾分布二阶参数在极值理论中扮演着重要的角色,尤其是重尾指数估计中门限的最优选取,以及重尾指数降偏差估计的渐近偏差都取决于二阶参数p.基于统计量M_(n^(a))(k),提出了重尾分布二阶参数的半参数估计,在极值理论的二阶正则条件下,得到二阶参数半参数估计的相合性,在三阶正则条件下得到其渐近正态性.通过Monte-Carlo模拟,从大样本性质与小样本性质这两方面,对提出的半参数估计进行比较.结果表明,本文的估计,在大样本性质方面,表现较优;在小样本性质方面,一定范围内表现得更好. The second order parameter of heavy-tailed is of primordial importance m extreme value theory. Especially, the adaptive choice of the best threshold to be considered in the estimation of the heavy tailed index and the classical estimators of heavy-tailed index trying to reduce the main component of their asymptotic bias, which depend strongly on p. Based on the statistics Mn^(α)(k), we present the semi-parameter estimation of the second order pararneter of heavy-tailed distribution. We prove the consistency of the second order parameter under the second order condition in extreme value theory, and prove asymptotic normality under the third order condition. We compare the estimators provided in two aspects of large sample behavior and small sample behavior through Monte-Carlo techniques. The conclusion is that the performance of the new estimator is better in large sample behavior and is better in the certain range in small sample behavior.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第12期3156-3167,共12页 Systems Engineering-Theory & Practice
基金 教育部人文社会科学研究项目(13YJA790154) 山西省高校人文社科重点研究基地项目(2011305)
关键词 正则变化条件 二阶参数 相合性 渐近正态性 regular various conditions~ second order parameter consistency asymptotic normality
  • 相关文献

参考文献17

  • 1Hill B M. A simple general approach to inference about the tail of a distribution[J]. The Annals of Statistics, 1975, 3: 1163-1174.
  • 2Dekkers A, Einmahl J, de Haan L. A moment estimator for the index of an extreme value distribution [J]. The Annals of Statistics, 1989, 17: 1833-1855.
  • 3刘维奇,邢红卫.重尾指数估计中阈值k的简便优化估计[J].系统工程理论与实践,2010,30(8):1465-1470. 被引量:8
  • 4Hall P, Welsh A H. Adaptive estimates of parameters of regular variationfj]. The Annals of Statistics, 1985, 13: 331-341.
  • 5Beirlant J, Vynckier P, Teugels J L. Tail index estimation, Pareto quantile plots, and regression diagnostics [J]. Journal of the American Statistical Association, 1996, 91: 1659-1667.
  • 6Drees H, Kaufmann E. Selecting the optimal sample fraction in univariate extreme value estimation[J]. Stochastic Processes and Their Applications, 1998, 75: 149-172.
  • 7Peng L. Asymptotically unbiased estimator for the extreme-value index[J]. Statistics and Probability Letters,1998,38(2): 107-115.
  • 8Feuerverger A, Hall P. Estimating a tail exponent by modeling departure from a Pareto distribution [J]. The Annals of Statistics, 1999, 27: 760-781.
  • 9Gomes M I, Martins M J. Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter[J]. Extremes, 2002, 5(1): 5-31.
  • 10Gomes M I, de Haan L, Peng L. Semi-parametric estimation of the second order parameter in statistics of extremes [J]. Extremes, 2002, 5(4): 387-414.

二级参考文献10

  • 1Hill B. A simple general approach to infererce about the tail of a distribution[J]. Annals of Statistics, 1975, 3: 1163-1174.
  • 2Resnick S, Starica C. Tail index estimation for dependent data[J]. The Annals of Applied Probability, 1998, 4: 1156-1183.
  • 3Kratz M, Resnick S. The qq-estimator and heavy tails[J]. Stochastic Models, 1996, 12(4): 699-724.
  • 4Beirlant J, Vynckier P, Teugels J L. Tail index estimation, pareto quantile plots, and regression diagnostics[J]. Journal of the American Statistical Association, 1996, 436: 1659-1667.
  • 5Resnick S, Starica C. Smoothing the Hill estimator[J]. Advances in Applied Probability, 1997, 29: 271-293.
  • 6Drees H, Haan L D, Resnick S. How to make a Hill plot[J]. Annals of Statistics, 2000, 28: 254-274.
  • 7Sousa B. A contribution to the estimation of the tail index of heavy-tailed distributions[D]. The University of Michigan, 2002.
  • 8Hall P. Using the bootstrap to estimate mean square error and select smoothing parameters in non-parametric problems[J]. Journal of Multivariate Analysis, 1990, 32: 177-203.
  • 9Danielsson J. Using a bootstrap method choose the sample fraction in tail index estimation[J]. Journal of Mul- tivariate Analysis, 2001, 76:226-248.
  • 10Resnick S. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling[M]. New York, USA: Springer Science+Business Media LLC, 2007.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部