期刊文献+

基于LCD降噪和VPMCD的滚动轴承故障诊断方法 被引量:12

A Rolling Bearing Fault Diagnosis Method Based on LCD De-noising and VPMCD
下载PDF
导出
摘要 提出了一种基于局部特征尺度分解(LCD)降噪和多变量预测模型(VPMCD)的滚动轴承故障诊断方法。该方法首先采用LCD对滚动轴承振动信号进行降噪;然后计算降噪后信号在不同维数下的模糊熵,并以模糊熵为特征值,采用VPMCD方法建立模糊熵的预测模型;最后用所建立的模型来预测待分类样本的特征值,把预测结果作为分类依据进行模式识别。实验分析结果表明,采用LCD方法降噪可以有效地提高VPMCD的分类性能,与神经网络、支持向量机等分类器相比,VPMCD方法可以更准确、更有效地识别滚动轴承的工作状态和故障类型。 A fault diagnosis of rolling bearing based on LCD de--noising and VPMCD was pro- posed. Firstly, using the LCD on the rolling bearing vibration signals to reduce noise signals, then the fuzzy entropy of the de--noising signals in the different dimensions was calculated and as characteristic values. Using the VPMCD method to establish the fuzzy entropy prediction model, and finally the characteristic values of those unclassified signals samples were predicted by the model. The results of the prediction would be recognized by the model as accordance to classify. The experimental results prove that the LCD de--noising can effectively increase the VPMCD classification performance, com- pared with neural network and support vector machine classifier, the VPMCD methods can identify the work states and fault patterns of the rolling bearing more accurately and more effectively.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第24期3338-3344,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51175158 51075131) 湖南省自然科学基金资助项目(11JJ2026) 中央高校基本科研业务费专项资金资助项目
关键词 LCD降噪 多变量预测模型 滚动轴承 故障诊断 local characteristic-- scale decomposition(LCD) de-- noising variable predictive mode based class discriminate(VPMCD) rolling bearing fault diagnosis
  • 相关文献

参考文献2

二级参考文献28

  • 1王延春,谢明,丁康.包络分析方法及其在齿轮故障振动诊断中的应用[J].重庆大学学报(自然科学版),1995,18(1):87-91. 被引量:25
  • 2[1]Randall R B. A new method of modeling gear faults. ASME Journal of Mechanical Design, 1982, 104:259~267
  • 3[2]Radcliff G A. Condition monitoring of rolling element bearings using the enveloping technique. Machine Cond- ition Monitoring, Mechanical Engineering Publication Ltd., London:1990:55~67
  • 4[6]Randall R B. Hilbert transform techniques in machine diagnostics. In:IFToMM International Conference on Rotor dynamics, Tokyo, 1986:409~420
  • 5[7]Petros M, James F K, Thomas F Q. On amplitude and frequency demodulation using energy operator. IEEE Transactions on Signal Processing, 1993, 41(4):1 532~1 550
  • 6[8]Alexandros P, Petros M. A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation. Signal Processing, 1994, 37(1):95~120
  • 7[9]Petros M, James F K, Thomas F Q. Energy separation in signal modulations with application to speech analysis. IEEE Transactions on Signal Processing, 1993, 41(10): 3024~3051
  • 8[12]Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 1998, 454:903~995ITS APPLICATION IN MECHANICAL FAULT DIAGNOSIS
  • 9Huang N E,Zheng Shen,Long S R,et al.Theempirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time seriesanalysis[A].Proc.Roy.Soc[C].London,1998,454:903-995.
  • 10Huang N E,Wu Z.A review on Hilbert-Huangtransform:method and its applications to geophysicalstudies[J].Adv.Adapt.Data Anal.,2009,1:1-23.

共引文献244

同被引文献151

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部