期刊文献+

基于加权平均值的汽车车牌监控图像过滤技术研究 被引量:4

下载PDF
导出
摘要 车牌监控图像由于照明、天气、运动目标位置和运动目标速度的不同,图像质量差异很大,从而不利于车牌监控的定位和识别。本文采用最大值法、平均值法和加权平均值法三种方法对车牌监控图像进行过滤,结果表明:采用加权平均值法进行车牌图像颜色过滤能够保留绝大部分的汽车车牌信息,使得目标和背景之间边界清晰,是一种较好的车牌图像彩色过滤方法。 video surveillance images due to different fighting, weather, target position and movement speed of the moving object, a large difference in image quality, there are ot^en low in contrast, gray uneven distribution, noise, etc., to the detriment of video surveillance and positioning identified. In order to eliminate these negative factors , we use the image color filtering technology, video surveillance images for color filters . This paper describes the principles of necessity and video color filters, and then to monitor the license plate image, for example, describes the process of video surveillance images, and uses three color filter method maximum method, the mean and weighted mean method its filter results were verified. The results show that using the weighted average method method method for video image color filter to retain the majority of car license plate information, and background information on unrelated effectively clear filter between the target and the background border conducive license plate recognition is a species better image color filter method.
作者 谢鹏鹏
出处 《数字技术与应用》 2013年第11期97-98,100,共3页 Digital Technology & Application
关键词 车牌监控 图像处理 颜色过滤 最大值法 平均值法 加权平均值法 video surveillance image processing color filter maximum method averages law weighted average of the Act
  • 相关文献

参考文献6

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2孔晓东.智能车牌监控技术研究[D].[博士].上海:上海交通大学.2008.
  • 3李志慧,张长海,曲昭伟,王殿海.交通流视频检测中背景模型与阴影检测算法[J].吉林大学学报(工学版),2006,36(6):993-997. 被引量:16
  • 4MarrD,姚国正等译.视觉计算理论.科学出版社.1988.
  • 5SonkaM等,艾海舟等译.图像处理、分析与机器视觉.北京:人民邮电出版社.2003.1-550.
  • 6万卫兵,霍宏,赵宇明.智能车牌监控中目标检测与识别[M].上海:上海交通大学出版社,2010.1-290.

二级参考文献15

  • 1王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3Ridder C, Munkelt O, Kirchner H..Adaptive background estimation and foreground detection using kalman filtering[ C ] //Proc International Conference on recent Advances in Mechatronics,1995 : 193-199.
  • 4Wren Christopher Richard, Azarbayejani Ali, Darrell Trevor Pfinder. Real-time tracking of the human body[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 780-785.
  • 5Stauffer Chris, Grimson W E L. Adaptive background mixture models for real-time tracking [ J ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, 2: 246-252.
  • 6Kahl F, Hartley R, Hilsenstein V. Novelty detection in image sequences with dynamic background [ C ] //In :Statistical Methods in Video Processing. Berlin:Springer-Verlag Berlin ,2004 : 117-128.
  • 7Li Li-yuan, Gu Irene Yu-Hua, Leung Maylor K H,et al. Adaptive background subtraction based on feedback from fuzzy classification [ J ]. Optical Engineering,2004, 43(10) : 2381-2394.
  • 8Toyama Kentaro, Krumm John, Brumitt Barry, et al.Wallflower: Principles and practice of background maintenance[ C ] //Kerkyra, Greece : Institute of Electrical and Electronics Engineers Inc, Piscataway, N J,USA, 1999:255-261.
  • 9Prati A Cucchiara, Mikic R, Trivedi I M M. Analysis and detection of shadows in video streams: a comparative evaluation[ C]//In: CVPR,2001:571-576.
  • 10Prati A, Mikic I, Trivedi M M,et al. Detecting moving shadows : algorithms and evaluation [ J ]. IEEE Trans Pattern Anal Mach Intell,2003, 25(7) : 918-923.

共引文献269

同被引文献31

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部