期刊文献+

Enhancing Domain Knowledge with Semantic Models of Web Documents

Enhancing Domain Knowledge with Semantic Models of Web Documents
下载PDF
导出
摘要 The paper considers the problem of semantic processing of web documents by designing an approach, which combines extracted semantic document model and domain- related knowledge base. The knowledge base is populated with learnt classification rules categorizing documents into topics. Classification provides for the reduction of the dimensio0ality of the document feature space. The semantic model of retrieved web documents is semantically labeled by querying domain ontology and processed with content-based classification method. The model obtained is mapped to the existing knowledge base by implementing inference algorithm. It enables models of the same semantic type to be recognized and integrated into the knowledge base. The approach provides for the domain knowledge integration and assists the extraction and modeling web documents semantics. Implementation results of the proposed approach are presented.
作者 Anna Rozeva
出处 《Journal of Mathematics and System Science》 2013年第7期319-326,共8页 数学和系统科学(英文版)
关键词 Semantic model knowledge base document classification domain ontology knowledge integration. Web文档 语义模型 知识基础 分类规则 语义提取 语义加工 文档转换 特征空间
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部