期刊文献+

语法规则和改进关联规则的中文文本非等级关系提取研究 被引量:2

Non-hierarchical Relations Extraction of Chinese Texts Based on Grammar Rules and Improved Association Rules
原文传递
导出
摘要 针对目前适用于中文文本非等级关系提取方法偏少以及关联规则筛选方法忽略了集中出现在部分文本集中的领域词汇关系的问题,通过对中文文本的统计分析,尝试定义一套中文非等级关系提取的规则,同时提出一种加入平均值变量的改进的关联规则。实践证明,基于自定义的语法规则提取方法能够有效地从中文文本中提取出主、谓、宾语,进而提取出非等级关系,改进的关联规则方法能够提取出集中出现在部分文本集中的领域词汇非等级关系。 There is lack of non-hierarchical relations extraction suitable for Chinese texts. Association Rules do not effectively exlracl wcabulary relations concentrated in part of the text. This paper defines a set of non-hierarchical relations extraction rules of Chinese texts and an improved association rules based on average value. The practical results show that nun-hierarchical relations extraction rules of Chinese texts can efficiently extract subject, predicate and object in Chinese texts, and form the non-hierarchical relations. Improved association rules can extract ram-hierarchical relations of the wx'abulary concentrated in part of the text.
出处 《图书情报工作》 CSSCI 北大核心 2013年第22期126-131,147,共7页 Library and Information Service
基金 国家社会科学基金重大项目"基于语义的馆藏资源深度聚合与可视化展示研究"(项目编号:11&ZD152)和国家社会科学基金重大项目"我国质量安全评价与网络预警方法研究"(项目编号:11&ZD158)研究成果之一
关键词 非等级关系提取 语法规则 关联规则 中文文本 non-hierarchical relations extraction grammar rule association rule Chinese text
  • 相关文献

参考文献13

  • 1韩婕,向阳.本体构建研究综述[J].计算机应用与软件,2007,24(9):21-23. 被引量:50
  • 2刘萍,胡月红.领域本体学习方法和技术研究综述[J].现代图书情报技术,2012(1):19-26. 被引量:14
  • 3Sahay S, Mukherjea S. Discovering semantic biomedical relations utilizing the Web[C]//Pacific Symposium on Biocomputing.New York:ACM Transactions on Knowledge Discovery from Data, 2006.
  • 4Maedche A, Staab S. Discovering conceptual relations from text[C]//Proceedings of the 12th International Conference on Software and Knowledge Engineering.Chicago:Knowledge Systems Institute, 2003: 321-325.
  • 5Kavalec M, Maedche A, Svatek V. Discovery of lexical entries for non-taxonomic relations in ontology learning[C]//Proceedings of SOFSEM 2004: Theory and Practice of Computer Science 2004.Berlin:Springer, 2932:249-256.
  • 6Hastings P, Graesser A, Hastings K. Inferring the meaning of verbs from context[C]//Proceedings of the 20th Annual Conference of the Cognitive Science Society.Mahwah:Lawrence Erlbaum Associates, 1998: 1142-1147.
  • 7谭力,史忠植.基于数据挖掘的本体关系学习算法[J].郑州大学学报(理学版),2008,40(3):40-43. 被引量:3
  • 8徐桂臣,叶枫.基于语义加权距离的语义相似度改进算法[J].情报杂志,2012,31(2):119-123. 被引量:5
  • 9Jiang Tao, Tan A H, Wang K. Mining generalized associations of semantic relations from textual Web content[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(2): 164-172.
  • 10Villaverde J, Persson A, Godoy D, et al. Supporting the discovery and labeling of non-taxonomic relationships in ontology learning[J]. Expert Systems with Applications, 2009 36(7): 10288-10294.

二级参考文献132

  • 1方卫东,袁华,刘卫红.基于Web挖掘的领域本体自动学习[J].清华大学学报(自然科学版),2005,45(S1):1729-1733. 被引量:31
  • 2杜文华,董慧.本体建设工具比较研究[J].情报杂志,2005,24(2):5-7. 被引量:15
  • 3郑家恒,卢娇丽.关键词抽取方法的研究[J].计算机工程,2005,31(18):194-196. 被引量:41
  • 4李林,刘贺欢,刘椿年.Ontology自动构建平台OntoAGS[J].计算机工程,2006,32(13):212-214. 被引量:6
  • 5张敏,耿焕同,王煦法.一种利用BC方法的关键词自动提取算法研究[J].小型微型计算机系统,2007,28(1):189-192. 被引量:19
  • 6陈文亮,朱靖波,姚天顺,等.基于Bootstrapping的领域词汇自动获取[C]//语言计算与基于内容的文本处理——全国第七届计算语言学联合学术会议论文集,2003:67-72.
  • 7Buitelaar E Ontology Learning from Text: Methods, Evaluation and Applications[M]. [S. l.]: ISO Press, 2005.
  • 8Girju R, Moldovan D. Text Mining for Causal Relations[C]//Proc. of the FLAIRS Conference. Florida, USA: AAAI Press, 2002: 360-364.
  • 9Ciramita M. Unsupervised Learning of Semantic Relations Between Concepts of a Molecular Biology Ontology[C]//Proc. of the 19th International Joint Conference on Artificial Intelligence. Edinburgh, UK: [s. n.], 2005.
  • 10Maedche A, Staab S. Discovering Conceptual Relations from Text[C]//Proc. of the 12th International Conference on Software and Knowledge Engineering. Berlin, Germany: [s. n.], 2000: 321-325.

共引文献309

同被引文献83

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部