期刊文献+

基于高效二阶最小化的运动模糊目标跟踪算法 被引量:1

Motion Blur Target Tracking Method Based on Efficient Second-Order Minimization
下载PDF
导出
摘要 针对运动模糊严重时容易导致目标跟踪失败的问题,提出了基于高效二阶最小化(ESM)的模板匹配目标跟踪算法.首先提出一种运动模糊模板匹配的图像构造模型.然后引入ESM算法,在ESM算法基础上,用改进的高效二阶最小化(ESM-MB)算法跟踪运动模板.引入摄像头快门估计时间作为参数,提出了自适应不同快门速度所引起的不同的运动模糊的ESM-MB-ST跟踪算法.最后,通过真实视频序列的跟踪实验,验证了提出的ESM-MB算法及ESM-MB-ST算法具有更强的鲁棒性与实时性. As severe motion blur will lead to the failure of target tracking, an ESM-based template matching target tracking algorithm was proposed. First, an image structure model of motion-blurred template matching was presented. Then, the ESM algorithm was introduced and motion template was tracked based on ESM-MB. Subsequently, camera shutter estimated time was introduced as a parameter and self-adaptive ESM-MB-ST tracking algorithm of motion blur caused by different shutter speed was proposed. Finally, the real video sequence tracking experiments indicated that the proposed ESM-MB algorithm and the ESM-MB-ST algorithm had a better robustness and real-time ability.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第12期1678-1681,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60970157)
关键词 高效二阶最小化 运动模糊 图像构造模型 快门时间 模板匹配 efficient second-order minimization motion blur image formation model shuttertime template matching
  • 相关文献

参考文献9

  • 1MeiC, Benhimane S, Malis E, et al. Homography-based tracking for central catadioptric cameras E C 1//2006 IEEE/ RSJ International Conference on Intelligent Robots and Systems. Beijing ,2006:669 - 674.
  • 2Jin H L,Favaro P, Cipolla R. Visual tracking in the presence of motion blur [ C ]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego,2005 : 18 - 25.
  • 3Ozuysal M, Fua P, Lepetit V. Fast keypoint recognition in ten lines of code [ C ]//IEEE Conference Computer Vision and Pattern Recognition. Minneapolis,2007 : 1242 - 1249.
  • 4Okumura B ,Kanbara M,Yokoya N. Augmented reality based on estimation of defocusing and motion blturing from captured images [C]//Fifth IEEE and ACM International Symposium on Mixed and Augmented Reality. Santa Barbara,2006:219 - 225.
  • 5Klein G, Murray D. Improving the agility of keyframe-based SLAM [ C]//10th European Conference on Computer Vision. Marseille, 2008 : 802 - 815.
  • 6Wu Y, Ling H B, Yu J Y, et al. Blurred target tracking by blur-driven tracker [ C]//IEEE International Conference on Computer Vision. Barcelona,2011 : 1100 - 1107.
  • 7Malis E. Improving vision-based control using efficient second-order minimization techniques[ C]//2004 IEEE International Conference on Robotics and Automation. New Orleans ,2004 : 1843 - 1848.
  • 8Tahri O, Mezouar Y. On the efficient second order minimization and image-based visual servoing [ C]//2008 1EEE International Conference on Robotics and Automation. Pasadena, 2008 : 3213 - 3218.
  • 9Kwon J, Lee K M. Visual tracking decomposition [ C]//2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco ,2010 : 1269 - 1276.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部