期刊文献+

基于改进CBR的机器人足球对抗决策技术研究 被引量:7

Applying Intelligent Confrontation Decision-Making System to Robot Soccer Based on Improved CBR( Case-Based Reasoning)
下载PDF
导出
摘要 为了进一步提高机器人足球比赛决策系统的智能性,让其能够模仿人类的思维模式进行比赛,提出了一种基于改进案例推理(case-based reasoning,CBR)的机器人足球对抗决策技术。该技术在传统CBR技术基础上,以"案例调整"来驱动"案例重用",用一级案例库存储原始案例,用二级案例调整知识库存储案例调整知识;利用2级案例推理的方法,对场上局势和案例数据库进行匹配和调整,从而给执行层输出更合理的应对策略来解决当前赛场局势需求。实验结果表明,该技术比较有效、可靠。 This paper presents the intelligent confrontation decision-making system model based on two level CBR for robot soccer .This system model guides the robot football by imitating human thinking .Sections 1 and 2 of the full paper explain the two level CBR theory and how to build the robot football intelligent decision model which is based on two level CBR .Fig.2 illustrates the robot soccer decision-making process by using CBR technology .Fig.3 shows a soccer robot decision-making layer CBR case based structure .Section 3 verifies the feasibility of the robot soccer decision-making based on CBR with SimuroSot 5vs5 platform.Table 1 shows the specific content of the robot soccer case database on this platform .Table 2 shows the relationship between attribute weights and competition situ-ation.Table 3 shows the contents of the database strategy .
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第6期991-996,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(61003129) 西北工业大学研究生创业种子基金(Z2012133)资助
关键词 机器人足球 案例推理 对抗决策 案例调整 case based reasoning, decision making, flowcharting adjustment of case-based reasoning, confronta-tion decision-making system, robot soccer
  • 相关文献

参考文献7

二级参考文献13

  • 1楚要钦,李孝安,蒲勇.多智能体足球机器人系统的协作控制[J].哈尔滨工业大学学报,2004,36(7):911-913. 被引量:13
  • 2彭军,吴敏.基于行为预测的多智能体协作模型[J].计算机工程与应用,2005,41(9):23-25. 被引量:8
  • 3王文学,王强,孙萍.卡尔曼滤波在机器人足球比赛系统中的应用[J].机器人,2006,28(4):410-414. 被引量:11
  • 4Amalia F Foka and Panos E Trahanias. Predictive Autonomous Robot Navigation [C]. Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, December, 2002, ( 1 ) :490 -495.
  • 5叶世伟著,史忠植译.神经网络原理[M].北京:机械工业出版社,2004.
  • 6WendyBoggs.UML with Rational Rose从入门到精通[M].北京:电子工业出版社,2000..
  • 7李建平 石全 甘茂治.装备战场抢修理论及应用[M].北京:兵器工业出版社,2000.122-123.
  • 8Ian Watson. An introduction to case-based reasoning[C]. The First United Kingdom Workshop On Case-Based Reasoning, 1995:3 -16.
  • 9ROY S.BERNS 颜色技术原理[M].李小梅,马如,陈立荣,译.北京:化学工业出版社,2002:264-271.
  • 10BONZANO A,CUNNINGHAM P,SMYTH B,et al.Using introspective learning to improve retrieval in CBR:a case study in air traffic control[C]∥ Proceedings of the 2th International Conference on Case-Based Reasoning.Providence,USA:[s.n.],1997:291-302.

共引文献6

同被引文献39

  • 1钟秋波,高超,方宝富.一种复杂环境下的仿人机器人路径规划算法[J].华中科技大学学报(自然科学版),2011,39(S2):192-195. 被引量:3
  • 2Xia K,Wu Y,Ren X,et al. Research in Clustering Algo-rithm for Diseases Analysis [J]. Journal of Networks,2013,8(7):1632-1639.
  • 3PEULA J M, URDIALES C, HERRERO I, et al. Implicit robot coordination using case-based reasoning behaviors [ C]// Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ: IEEE, 2013:5929-5934.
  • 4ALTAF M M, ELBAGOURY B M, ALRADDADY F, et al. Extended case-based behavior control for multi-humanoid robots [ EB/ OL]. [ 2015- 04- 05 ]. http://www.worldscientific.com/doi/abs/10.1142/S0219843615500358?src=recsys.
  • 5de PAZ J F, BAJO J, BORRAJO M L, et al. A multi-Agent system for Web-based risk management in small and medium business [ J]. Expert Systems with Applications, 2012, 39(8): 6921 -6931.
  • 6DALAL S, TANWAR G, ALHAWAT N. Designing CBR-BDI Agent for implementing supply chain system [ J]. International Journal of Engineering Research and Applications, 2013, 3(1) : 1288 - 1292.
  • 7FRAILE J A, PAZ Y, BAJO J, et al. Context-aware muhi-Agent system: planning home care tasks [ J]. Knowledge and Information Systems, 2014, 40(1) : 171 - 203.
  • 8CHENG Z, MIN H, SHEN X. Case-based reasoning with improved vector space model of indoor mobile robot [ C]// Proceedings of the 2014 11th World Congress on Intelligent Control and Automation. Piscataway, NJ: IEEE, 2014:2239-2246.
  • 9李鹏,马建军,李文强,郑志强.一类不确定非线性系统的改进积分型滑模控制[J].控制与决策,2009,24(10):1463-1466. 被引量:35
  • 10罗乾又,张华,王姮,解兴哲.改进人工势场法在机器人路径规划中的应用[J].计算机工程与设计,2011,32(4):1411-1413. 被引量:63

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部