期刊文献+

锂离子负极材料Li_4Ti_5O_(12)新工艺的合成及其掺杂改性

Synthesis and doping modification with new technology of cathode material Li_4Ti_5O_(12) for li-ion batteries
下载PDF
导出
摘要 通过运用机械法-固相两步法工艺与机械法-喷雾造粒-固相三步法工艺合成了负极材料Li4Ti5O12,并对其进行掺杂改性研究(Li4Ti4.95Nb0.05O12),采用XRD、SEM、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试探讨了材料颗粒形貌及Nb的掺杂对产品结构和电化学性能的影响。XRD和SEM测试表明产品相纯度及颗粒形貌主要受工艺的影响。电化学性能测试结果显示,机械法-喷雾造粒-高温固相三步法制备的掺杂Nb产品的电化学性能有明显提升,其具有更小的韦伯阻抗系数σ和大的锂离子扩散系数D,表现出较高的比容量和循环稳定性,0.2C的放电容量接近理论容量175mAh·g-1,5C的放电容量达106.14mAh·g-1,50圈后的容量仍高达101.71mAh·g-1。 The cathode material Li4Ti5O12 for Li-ion batteries were prepared via two-step of mechanical-solid phase method ,three-step of mechanical-spray-dried-solid phase method and Nb-doping modification. Effects of the morphology and Nb-doping on structure and properties of the products were investigated by using XRD,SEM, cyclic vohammetry(CV), electrochemical imprdence spectra(EIS)and charge-discharge tests. XRD and SEM results indicated that the phase purity, crystallinity and morphology mainly depend on synthetic technology. The electrochemical tests showed that the sample that Nb-doping was prepared via three-step exhibited better electrochemical performance with much smaller Warburg impedance coefficient(o)and higher lithium ion diffusion coefficient(D), and showed higher capacity and good cycling stability. Its dis- charge capacity at 0. 2C reached the theoretical capacity175mAh · g^-1, the discharge capacity at 5C extended 106. 14mAh · g^-1 ,and retained 101.71mAh · g^-1after 50 cycles.
出处 《化工新型材料》 CAS CSCD 北大核心 2013年第12期156-158,167,共4页 New Chemical Materials
基金 内蒙古工业大学科学研究项目基金(ZD200907) 内蒙古自治区高等学校科学研究项目(NJZY11074) 国家自然科学基金(21006043)资助项目
关键词 锂离子电池 新工艺 Li4Ti5O12 Nb掺杂 li-ion battery, new technology,Li4Ti5O12, Nb-doping
  • 相关文献

参考文献18

  • 1张剑波,连芳,高学平,李建刚,范丽珍,何向明.锂离子电池及材料发展前瞻--第16届国际锂电会议评述[J].中国科学:化学,2012,42(8):1252-1262. 被引量:14
  • 2张欢,其鲁,高学平,杨坤,张鼎.离子交换法合成纳米级锂离子电池负极材料Li_4Ti_5O_(12)[J].无机化学学报,2010,26(9):1539-1543. 被引量:7
  • 3Ju Seohee;Kang Yunchan.查看详情[J],{H}Journal of Physics and Chemistry of Solids2009(01):40-44.
  • 4Hao Yanjing;Lai Qiongyu;Lu Jizheng.查看详情[J],{H}Journal of Power Sources2006(02):1358-1364.
  • 5Jhan Yiruei;Lin Chihyuan;Dub Jenqgong.查看详情[J],{H}Materials Letters2011(15 16):2502-2505.
  • 6Zhu J P;Zhao J J;Yang H W.查看详情[J],AdvSci Lett2011(02):484-487.
  • 7Zhu Jiping;Zu Wei;Zhao Junjie.查看详情[J],{H}Journal of Nanoscience and Nanotechnology2012(03):2539-2542.
  • 8Yi Tingfeng;Xie Ying;Wu Qiuiu.查看详情[J],{H}Journal of Power Sources2012220-226.
  • 9Yu Zijia;Zhang Xianfa;Yang Guiling.查看详情[J],{H}Electrochimica Acta2011(24):8611-8617.
  • 10Jung Hungi;KimJunghoon;Scrosati Bruno.查看详情[J],{H}Journal of Power Sources2011(18):7763-7766.

二级参考文献34

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部