期刊文献+

冷连轧末机架厚度控制策略的优化 被引量:8

Strategy Optimization of Final Stand Gauge Control for Tandem Cold Mill
下载PDF
导出
摘要 五机架冷连轧机末机架采用轧制力闭环控制模式时,会出现4^#机架负荷过大以及4^#~5^#机架间张力控制精度低等问题,继而对厚度控制精度造成影响。为了在保证末机架轧制力控制精度的前提下提高厚度控制精度,提出了末机架厚度控制优化策略。通过建立动态轧制力补偿控制器与动态负荷平衡控制器,补偿了速度调节对张力以及厚度控制的影响,并实现了各机架的负荷分配的平衡。现场实际应用效果表明,在实现末机架高精度轧制力控制的同时,优化了4^#机架负荷,且成品厚度控制精度均远优于+1%。该优化策略满足了冷连轧厚度控制的要求。 The overload of stand 4 and low tension control accuracy between stand 4 and stand 5 were caused, and then the gauge control accuracy was influenced, since the rolling force control closed-loop mode for final stand was adopted in five-stand tandem cold mill. In order to improve gauge control accuracy under the premise of high rolling force control accuracy for final stand, an optimized strategy for last stand gauge control was proposed. By building up dynamic rolling force compensation controller and dynamic load balance controller, the effects of speed adjustment on tension and gauge were compensated, and the load distribution of stands was balanced. The practical application results show that the high accuracy control result of final stand rolling force is achieved, and the load of stand 4 is optimized. In addition, the gauge control accuracy of product is better than ± 1%. This optimized strategy can satisfy well the need of gauge control of tandem cold mill.
出处 《轧钢》 2013年第6期50-55,共6页 Steel Rolling
基金 国家自然科学基金资助项目(51074051)
关键词 冷连轧 厚度控制Smith预估控制 解耦控制 动态轧制力补偿控制 动态负荷平衡控制 动态轧制力阈值 tandem cold rolling gauge control Smith prediction control decoupling control dynamic rolling force compensation control dynamic load balance control dynamic rolling force thresholds
  • 相关文献

参考文献5

二级参考文献32

  • 1何立平,李旭,刘相华,张殿华,彭泽波,张其生.热连轧带钢卷取温度的模糊预估控制[J].钢铁研究学报,2006,18(8):23-27. 被引量:7
  • 2Wang D D, Tieu A K, de Boer F G, et al. Toward a Heuristic Optimum Design of Rolling Sehedule for Tandem Cold Rolling Mills [J]. Engineering Application of Artificial Intelligence, 2000, 13(4): 397.
  • 3LIU Zhan-ying. Rolling Distortion Schedule Optimization Design [M]. Beijing: Metallurgical Industry Press, 1996 (in Chinese).
  • 4Purshouse Robin C, Fleming Peter J. On the Evolutionary Optimization of Many Conflicting Objectives [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 770.
  • 5HU Bao-qing. The Basis of Fuzzy Theory [M]. Wuhan: Wuhan University Press, 2004 (in Chinese).
  • 6Deb K, Thiele L, Laumanns M, et al. Scalable Multi-Objective Optimization Test Problems[C] //Proc of Cong Evol Compute. Piseataway: IEEE, 2002: 825.
  • 7Oduguwa Victor, Roy Rajkumar, Farrugia Didier. Fuzzy Multi- Objective Optimization Approach for Rod Shape Design in Long Product Rolling [J]. Lecture Notes in Artificial Intelligence, 2003, 27(15): 636.
  • 8Bath S K, Dhillon J S. Fuzzy Satisfying Stochastic Multi-Objective Generation Scheduling by Weightage Pattern Search Meth ods [J]. Electric Power Systems Research, 2004, 69(2) :311.
  • 9Duenas Alejandra, Petrovic Dobrila. Multi-Objective Genetic Algorithm for Single Machine Scheduling Problem Under Fuzziness [J]. Fuzzy Optimization and Decision Making, 2008, 7 (1): 87.
  • 10ZHENG Lu, GU Xing-sheng. Fuzzy Production Scheduling in No-Wait Flow Shop to Minimize the Makespan With E/T Constraints Using SA [C]//Proceedings of the World Congress on Intelligent Control and Automation (WCICA) Vol. 4. Piscatoway: IEEE, 2004: 2909.

共引文献80

同被引文献114

引证文献8

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部