期刊文献+

多尺度分形压缩感知遥感成像方法 被引量:3

Multi-scale Fractal Compressed Sensing Remote Sensing Imaging
下载PDF
导出
摘要 针对压缩感知(compressive sensing,CS)在遥感成像应用中存在的若干瓶颈,提出一种基于多尺度透镜组的分形压缩感知成像方法。一方面,通过多尺度透镜组避免了基于稀疏表示的CS成像方式在大视场角观测条件下出现海量运算开销的问题;另一方面,运用分形维度代替l1范数最小化作为求解CS成像问题中的目标函数,实现了中、高分辨率遥感成像在图像细节水平上的质量提升。试验表明,多尺度分形压缩感知成像方法与传统CS成像相比,不仅能达到遥感成像的时效性要求,而且其细节层次上的成像质量也大幅提高。 A novel fractal compressive sensing (CS) imaging method is proposed in this paper to solve some bottlenecks of CS application in remote sensing imaging. On the one hand, multi-scale lens would be used to reduce the massive computation cost, which is caused by the traditional CS imaging based on sparse representation under large field of view. On the other hand, l1-norm minimization, as the object function ol traditional CS imaging, is replaced by fractal dimension for improving the quality of middle and high resolution remote sensing imaging in image details. Experimental results show that, multi-scale fractal CS imaging method can not only meet the timeliness requirement of remote sensing imaging but also improve the imaging quality in details level.
出处 《测绘学报》 EI CSCD 北大核心 2013年第6期846-852,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(61273251)
关键词 压缩感知 遥感成像 多尺度透镜组 L1 范数最小化 分形维度 compressed sensing remote sensing imaging multi-scale lens l1 -norm minimization fractal dimension
  • 相关文献

参考文献22

  • 1王任享,胡莘,杨俊峰,王新义.卫星摄影测量LMCCD相机的建议[J].测绘学报,2004,33(2):116-120. 被引量:27
  • 2童晓冲,吴云东,王慧,张永生.大面阵CCD影像多通道不一致性消除算法[J].测绘学报,2006,35(3):234-239. 被引量:9
  • 3李庆奎,吕志平.基于学生化残差的模糊自适应滤波算法[J].测绘学报,2008,37(4):428-432. 被引量:2
  • 4贺小军,金光,杨秀彬,王金玲,曲宏松.星载相机轨道末期成像模型及图像复原算法[J].测绘学报,2010,39(6):579-584. 被引量:7
  • 5CANDES E, ROMBERG J, TAO T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Transactions on Information Theory, 2006, 52 (2): 489-509.
  • 6CANDES E, ROMBERG J, TAO T. Near Optimal Signal Recovery from Random Projections: Universal Encoding Strategies?[J]. IEEE Transactions on Information Theory, 2006, 52 (12): 5406-5425.
  • 7DONOHO D L. Compressed Sensing [J]. IEEE Transac- tions on Information Theory, 2006, 52 (4): 1289-1306.
  • 8TAKHARD, LASKAJ N, WAKIN M B, et al. A New Compressive Imaging Camera Architecture Using Optical- domain Compression [C]// Proceedings of Computational Imaging IV at SPIE Electronic Imaging. San Jose: [s. n. ], 2006.
  • 9GEHM M E, JOHN R, BRADY D J, et al. Single-shot Compressive Spectral Imaging with a Dual-disperser Architec- ture [J]. Optics Express, 2007, 15 (21): 14013-14027.
  • 10LUSTIG M, DONOHO D L, PAULY J M. Sparse MRI The Application of Compressed Sensing for Rapid MR Imaging [J]. Magnetic Resonance in Medicine, 2007, 58 (6) : 1182-1195.

二级参考文献26

共引文献41

同被引文献41

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部