期刊文献+

一种基于案例推理和协商的群体推荐算法 被引量:7

A Group Recommendation Algorithm Based on CBR and Negotiation
原文传递
导出
摘要 群体推荐是个性化推荐领域一个新的研究热点,其与传统个体推荐的重要区别之一,是需要群体成员进行协商或谈判,以提高群体满意度。针对该问题,提出了基于案例推理和协商的群体推荐算法,根据群体成员对项目的历史评价作为知识库,从群体用户角度出发进行协商或谈判,使用多Agent系统模拟群体用户在选择推荐项目问题上的协商过程,最终达成一致并进行推荐,推荐完成后通过用户反馈对群体成员的知识库进行及时更新。选取MovieLens数据库进行试验评价,结果表明,文中算法的推荐质量明显优于对比算法。 Group recommendation system (GRS) has become the focus in the research of personalized recommendation system, one of the main difference between it and the traditional individual recommendation system is that GRS requires consultation or negotiation among the members of the group, which aims to increase the group's whole satisfaction. To solve the problem, this paper proposes the group recommendation algorithm based on case-based reasoning and negotiation, which mainly builds a repository according to the historical ratings to the recommended items, uses multi-Agents system to simulate the negotiation process from user's perspective, and finally reaches an agreement with the result, meanwhile updates the repository with user's feedback. We find the group recommendation algorithm based on case-based reasoning and negotiation is more effective in the test.
出处 《系统工程》 CSSCI CSCD 北大核心 2013年第11期93-98,共6页 Systems Engineering
基金 国家自然科学基金资助项目(71271147)
关键词 群体推荐 协商 案例推理 多AGENT系统 Group Recommendation Negotiation CBR MAS
  • 相关文献

参考文献18

  • 1Ricci F, et al. Recommender systems handbook[M]. Berlin .. Springer, 2011 : 1-842.
  • 2Jameson A, Smyth B. Recommendation to groups [Z]. The adaptive web. Berlin,Heidelberg:Springer, 2007 : 596- 627.
  • 3Kim J K, et al. A group recommendation system for online communities [J] International Journal of Information Management, 2010,30(3) : 212-219.
  • 4Garcia I, Sebastia L, Onaindia E. On the design of individual and group recommender systems for tourism [J]. Expert Systems with Applications, 2011,38 (6) : 7683- 7692.
  • 5Garcia I, et al. Approaches to preference elicitation for group recommendation [C] // Computational Science and Its Applications - ICCSA 2011. Berlin, Heidelberg : Springer, 2011 : 547- 561.
  • 6Bobadilla J, et al. Generalization of recommender systems: Collaborative filtering extended to groups of users and restricted to groups of items[J]. Expert Systems with Applications, 2012,39 (1) : 172- 186.
  • 7O'Connor M, et al. PolyLens: A recommender system for groups of users [C] // ECSCW 2001. Netherlands: Springer, 2002 : 199 - 218.
  • 8Ardissono L, et al. Intrigue :Personalized recommen- dation of tourist attractions for desktop and hand held devices[J]. Applied Artificial Intelligence, 2003,17 (8 -9):687-714.
  • 9Chen Y L, Cheng L C, Chuang C N. A group recommendation system with consideration of interactions among group members[J]. Expert systems with applications, 2008,34 (3) : 2082 - 2090.
  • 10朱国玮,杨玲.基于遗传算法的群体推荐系统研究[J].情报学报,2009,28(6):946-951. 被引量:8

二级参考文献17

  • 1桑德拉·黑贝尔斯,理查·德威沃尔二世.有效沟通[M].李业昆,译.北京:华夏出版社,2005:9.
  • 2O'Connor M,Cosley D,Konstan J,et al.PolyLens:a recommender system for groups of users.In Procedings of the European conference on computer-supported cooperative work[C].2001:199-218.
  • 3Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framwork for performing collaborative filtering[C]//Procedings of the 1999 conference on research and development information retrieval.1999:230-237.
  • 4Masthoff J.Modeling a Group of Televison viewers[C]// Proceding s of the workshop futrue TV in intelligenct tutoring systems conference,2002:34-42.
  • 5McCarthy J F,Anagnost T D.MusicFX:an arbiter of group prefernces for computer supported collaborative workouts[C]// Procedings of the ACM conference on computer supported cooperative work.1998:363-372.
  • 6Jameson A.More than the sum of its members:Chanllenges for group recommender systems[C]// Procedings of the international working conference on advanced visual interfaces,Gallipoli Italy.2004.
  • 7Ardissono L,Goy A,Petrone G,et al.INTRIGUE:Personalized recommendation of tourist attractions for desktop and band held devices[J].Applied Artificial Intelligence,2003,17(8-9):687-714.
  • 8Shardanand U,Maes P.Social information filtering:algorithms for automating 'word of mouth'[C].Proceedings of Computer Hunam Interaction,1995:210-217.
  • 9Breese J S,Heckerman D,Kadie C.Empeirical analysis of predictive algorithms for collaborative filtering[C].Fourteenth Conference on Uncertainty in Artificial Intelligence,1998.
  • 10Deshpande M,Karypis G.Item-based top-n recommendation algorithms[J].ACM Transactions on Information Systems,2004,22(1):143-177.

共引文献7

同被引文献50

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部