期刊文献+

面向有机光电材料的电子激发态结构与过程的计算方法 被引量:2

Computational methodologies for the electronic excited states structure and processes for organic optoelectronic materials
原文传递
导出
摘要 共轭聚合物与有机分子材料中的电子激发结构与过程决定了材料的光电功能:根据Kasha规则,低能级激发态的排序决定能否发光;最低激发态至基态的辐射跃迁与无辐射跃迁之间的竞争决定了发光效率,后者主要由非绝热耦合(声子作用)决定;电荷激发态载体的传输由电子分布与振动耦合或杂质和无序的散射弛豫过程决定.本文针对有机功能材料的发光性能,介绍两种理论方法的研究进展,即可用于计算共轭聚合物激发态结构的量子化学密度矩阵重整化群方法和计算发光效率的多模耦合无辐射跃迁速率方法.这些方法被应用于有机功能材料的性能预测和分子设计中. The electronic excited states structure and their processes determine the optoelectronic properties for conjugated organic molecules and polymers: According to Kasha's rule, the ordering of the lowest-lying excited states determines whether a molecule or material can emit light or not; the luminescence quantum efficiency stems from the competition between the radiative and the non-radiative transition determines the light-emitting efficiency, the latter being dictated by non-adiabatic coupling (electron-phonon interaction); charge carrier transport is determined by the scattering/relaxation of electron distribution function with vibrations or impurities or disorders. In this review, we summarized the advances in theoretical methodology development towards quantitative prediction of the optoelectronic properties for organic materials, including the quantum chemistry density matrix renormalization group theory for the excited state structure in conjugated chains, and the multi-mode mixing non-radiative decay formalism for light-emitting efficiency. The methods have been applied to the prediction of optoelectronic properties of organic functional materials and molecular design.
作者 帅志刚
出处 《中国科学:化学》 CSCD 北大核心 2013年第12期1654-1668,共15页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(21290191,91233105)支持
关键词 电子相关性 激发态结构 振动耦合 无辐射跃迁速率 electron correlation, excited state ordering, vibronic coupling, non-radiative decay rate
  • 相关文献

参考文献3

二级参考文献59

  • 1Sun, Y.; Giebink, N. c.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. Nature 2006,440,908.
  • 2Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chern. Soc. 2001, 123(18),4304.
  • 3Kwong, R C.; Nugent, M. R; Michalski, L.; Ngo, T.; Raj an, K.; Tung, Y.; Weaver, M. S.; Zhou, T. X.; Hack, M.; Thompson, M. E.; Forrest, S. R.; Brown, J. J. Appl. Phys. Lett. 2002,81(1), 162.
  • 4Tokito, S.; lijima, T.; Tsuzuki, T.; Sato, F. Appl. Phys. Lett. 2003, 83(12),2459.
  • 5Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chern. Soc. 2003, 125(42),12971.
  • 6Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395(6698), 151.
  • 7Sajoto, T.; Djurovich, P. I.; Tamayo, A. B.; Oxgaard, J.; Goddard, W. A.; Thompson, M. E. J. Am. Chern. Soc. 2009, 131(28), 9813.
  • 8Endo, A.; Suzuki, K.; Yoshihara, T.; Tobita, S.; Yahiro, M.; Adachi, C. Chern. Phys. Lett. 2008, 460(1 3), 155.
  • 9Jansson, E.; Minaev, B.; Schrader, S.; Agren, H. Chern. Phys. 2007, 333(23), 157.
  • 10Peng, Q.; Niu, Y.; Shi, Q.; Gao, X.; Shuai, Z. J. Chern. Theory Comput. 2013, 9(2), 1132.

共引文献9

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部