期刊文献+

一类人禽间传染病模型的动力学分析(英文) 被引量:5

Dynamic Analysis of an Infectious Disease between Human and Poultry
原文传递
导出
摘要 讨论了一类人禽传染病模型,其中禽类被病毒感染后人们采取措施治疗病禽.治疗有助于禽类的存活,但人们可能通过接触病禽而被感染.禽间的疾病传播服从饱和接触率函数,人与禽的接触服从线性接触率.完成了稳定性和持久性研究,且进行了数值模拟以评估治疗的效果和风险. In this paper, a human-poultry eco-epidemiological model is investi- gated. Where, poultry is infected by bacteria, then people take measures to treat the infected individuals. The treatment contributes to the survival of poultry, but people may be infected through contact with the infected poultry. The spread of disease among poultry follows the saturation incidence function, the contact for human with poultry follows the linear contact rate. Stability and persistence are carried out, then numerical simulations are implemented to assess the effect and the risk of treatment.
作者 姜永 陈永雪
出处 《生物数学学报》 2013年第4期595-604,共10页 Journal of Biomathematics
关键词 饲养业 人-禽生态传染病模型 平衡点 持久性 稳定性 模拟 Farming industry Human-poultry eco-epidemiological model Equi-librium Persistence Stability Simulation
  • 相关文献

参考文献3

二级参考文献15

  • 1李建全,王峰,马知恩.一类带有隔离的传染病模型的全局分析[J].工程数学学报,2005,22(1):20-24. 被引量:26
  • 2Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 3Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.
  • 4Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243.
  • 5Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[ J]. J Math Biol, 1993,31(2) :529-539.
  • 6Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[ J].Math Biosci, 2001,171(2): 143-154.
  • 7Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858.
  • 8LaSalle J P. The Stability of DynamicalSystem [ M]. New York: Academic Press, 1976.
  • 9Jeffries C, Klee V, Van den Driessche P. When is a matrix sign stable? [ J]. Canad J Math, 1977,29(2) :315-326.
  • 10王霞,陶有德,宋新宇.一类带有肝炎B病毒感染的数学模型的全局稳定性分析(英文)[J].生物数学学报,2009,24(1):1-8. 被引量:14

共引文献51

同被引文献21

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部