期刊文献+

具脉冲扩散效应的单种群动力学模型

Dynamics on a Single Population Model with the Effect of Impulsive Diffusion
原文传递
导出
摘要 讨论了两斑块间脉冲扩散的单种群动力学模型,利用离散动力系统频闪映射理论,得到了种群持续生存的充分条件.结论刻画了现实的生物种群动力学性质,也丰富了脉冲微分方程理论. In this paper, we investigate the dynamical behaviors of a single population model with impulsive diffusion. The sufficient condition of system permanence is obtained by the discrete dynamical system determined by the stroboscopic map. Our results depict the dynamical property of the practical biological population, and enrich the theory of impulsive differential equation.
出处 《生物数学学报》 2013年第4期612-616,共5页 Journal of Biomathematics
基金 国家自然科学基金项目(No.11361014 10961008 11371030)
关键词 脉冲扩散 单种群模型 持续生存 Impulsive diffusion Single population model Permanence
  • 相关文献

参考文献11

  • 1Clark C W. Mathematical Bioeconomics[M]. Wiley, New York, 1990.
  • 2Kuang Yang. Delay Differential Equation with Application in Population Dynamics[M], NY: Academic Press, 1987, 67-70.
  • 3Allen L J S. Persistence and extinction in single-species reaction-diffusion models[J]. Bull. Math. Biol., 1983, 45(2):209-227.
  • 4Cui J A, Chen L S. Permanence and extinction in logistic and Lotka-Volterra system with diffusion[J]. Journal of Mathematical Analysis and Application, 2001, 258(2):512-535.
  • 5Lakshmikantham V, Bainov D D, Simeonov P. Theory of Impulsive Differential Equations[M]. Singapor: World scientific, 1989.
  • 6Jiao Jianjun, Pang Guoping, Chen Lansun, et al. A delayed stage-structured predator-prey model with im- pulsive stocking on prey and continuous harvesting on predator[J]. Applied Mathematics and Computation, 2008, 195(1):316-325.
  • 7Jiao Jianjun, Chen Lansun. Global attractivity of a stage-structure variable coefficients predator-prey system with time delay and impulsive perturbations on predators[J]. International Journal of Biomathematics, 2008, 1 (2) :197-208.
  • 8Jiao J, Yang X, Chen L, et al. Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input[J]. Chaos, Solitons and Fractals, 2009, 03:502-513.
  • 9An appropriate pest management SI model with biological and chemical control concern[J]. Applied Math- ematics and Computation, 2008, 196(1):285-293.
  • 10Jury E L. Inners and Stability of Dynamics System[M]. New York:Wiley, 1974.

二级参考文献2

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部