期刊文献+

关于一类害虫治理流行病Filippov模型的动力学性质分析 被引量:7

Dynamic Analysis of an Epidemic Filippov Model on Pest Control
原文传递
导出
摘要 首先,在不采取综合害虫治理策略的情况下,本文给出一个具有流行病的害虫模型的正平衡点的存在条件以及无病平衡点和正平衡点的全局稳定性条件;其次,把易感害虫种群数量作为害虫综合控制的指标,利用阈值控制策略建立了一个害虫治理流行病Filippov模型,并系统地对该模型的动力学性质进行分析,其中包括模型的滑线区域,真、假平衡点及伪平衡点的存在性和稳定性. In this paper, we first investigate the conditions of the existence of positive equilibria and the global stability of infection-free and positive equilibria without Integrated Pest Management strategy. Secondly, considering the susceptible pest populations as the index of pest control, we establish an epidemic Filippov model by using threshold control strategy and system- atically analyze the dynamics of such a system including sliding region, real and virtual equilibria, existence conditions and stability of pseudo equilibrium.
出处 《生物数学学报》 2013年第4期617-622,共6页 Journal of Biomathematics
基金 国家自然科学基金资助项目(10971001 11371030) 辽宁省高等学校优秀人才支持计划资助项目
关键词 害虫控制 Filippov模型 经济阈值 滑线区域 稳定性 Pest control Filippov model Economic threshold Sliding region Stability
  • 相关文献

参考文献10

  • 1Zhang Y J, Liu B, Chen L S. Extinction and permanence of a two-prey one-predator system with impulsive effect[J]. IMA:Mathematical Medicine and Biology, 2003, 20(4):309-325.
  • 2Lu Z H, Chi X B, Chen L S. Impulsive control strategies in biological control of pesticide[J]. Theoretical Population Biology, 2003, 64(1):39-47.
  • 3Liu B, Zhang Y J, Chen L S. The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management[J]. Nonlinear Analysis: Real World Applications, 2005, 6(2):227-243.
  • 4Liu B, Teng Z D, Chen L S. Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy[J]. Journal of Computational and Applied Mathematics, 2006, 193(1):347-362.
  • 5CHANGTONG LI,SANYI TANG.THE EFFECTS OF TIMING OF PULSE SPRAYING AND RELEASING PERIODS ON DYNAMICS OF GENERALIZED PREDATOR-PREY MODEL[J].International Journal of Biomathematics,2012,5(1):157-183. 被引量:13
  • 6李敏,刘兵,石丽云.一个具有阶段结构和时滞效应的综合害虫治理模型的研究[J].生物数学学报,2013,28(1):103-110. 被引量:2
  • 7Tan Y S, Chen L S. Modeling approach for biological control of insect pest by releasing infect pest[J]. Chaos, Solitons and Fractals, 2009, 39(1):304~15.
  • 8Liu B, Tian Y, Kang B L. Existence and attractiveness of order one periodic solution of a Holling II predator- prey model with state-dependent impulsive control[J]. International Journal of Biomathernatics, 2012, 5(3), Article ID 1260006, 18 pages.
  • 9Bernardo M D, Seara T M, Teixeira M A. Generic bifurcations of low codimension of planar Filippov systems[J]. Differential Equations, 2011, 250(4):1967-2023.
  • 10马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.

二级参考文献3

共引文献25

同被引文献30

  • 1张泽薇,谭佳.基于IPM策略的具有一般功能性反应的捕食与被捕食模型的动力学性质[J].新疆大学学报(自然科学版),2007,24(3):289-293. 被引量:1
  • 2HONG Zhang, LANSUN Chen. A Delayed Epidemic Model with Stage-structure and Pulses for Pest Management Strategy [ J ]. Non- linear Analysis: Real World Applications. 2008, 9 (4) : 1714 - 1726.
  • 3JIANG Guirong, LU Qishao. Impulsive Ecological Control of Staged-structured Pest Management System [ J ], Mathematical Bio- sciences and Engineering. 2005, 2 ( 2 ) : 329 - 344.
  • 4ZHANG Weipeng, FAN Meng. Periodicity in a generalized ecolog- ical competition system governed by impulsive differential equa- tions with delays [ J]. Mathematical and Computer Modelling, 2004, 39(4 -5) :479 -493.
  • 5LI Xiaoyue, ZHANG Xiaoying. A New Existence Theory for Posi- tive Periodic Solutions to Functional Differential Equations Wiyh Impulse Effects [ J ]. Computer & Mathematics with Applications, 2006, 51(12) : 1761 -1772.
  • 6LIU Bing, CHEN Lansun. Dynamic Complexities in Lotka-Volter- ra Predator-prey System Concerning Impulsive Control Strategy [ J ]. Intemationd Journal of Bifurcation and Chaos in Applied Sci- ences and Engineering,2005,15(2) :517 -531.
  • 7LIU Bing, CHEN Lansun. Dynamic Complexities of a Holling I Predator -prey Model Concerning Periodic Biological and Chemi-cal Control[ J ]. 2004,22 ( 1 ) : 123 - 134.
  • 8CHEN Lansun. Complex Dynamics of Holling I1 Lotka-Volterra Predator-prey System with Impulsive Perturbations on the Predator [J]. Chaos, Solitons and Fractals. 2003, 16(2) : 311 -320.
  • 9MENG Xinzhu, JIAO Jianjun. The Dynamics of an Age Struc- tured Predator---Prey Model with Disturbing Pulse and Time De- lays [ J ]. Nonlinear Analysis : Real World Applications, 2008, 9 (2) : 547 -561.
  • 10BAINOR D, SIMEONOV P. Impulsive Differential Equations: Periodic Solutions and Applications [ M ]. CRC Press, V. 1993:66.

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部