期刊文献+

一类CD4^+T细胞感染HIV病毒模型的全局稳定性

Global Stability of a model for HIV Infection of CD4^+T Cells
原文传递
导出
摘要 研究了一类具有标准发生率的CD4^+T细胞感染HIV病毒模型的动力学性质.通过分析,得到了病毒消除与否的阈值一基本再生数.证明了当基本再生数小于1时,未感染病毒平衡点全局渐近稳定,病毒将在宿主体内被清除.当基本再生数大于1时,病毒将在宿主体内持续生存,进一步给出了病毒感染平衡点全局渐近稳定的条件.最后对所得结论进行了数值模拟. A mathematical model of virus infected by HIV of CD4+T cells is investigated. The basic reproductive ratio which determines whether a virus is cleared or not is obtained. If the basic reproduction ratio is less than one, the infection-free equilibrium is global asymptoticMly stable, and the HIV virus is cleared from T-cell population. If the basic reproduction ratio is greater than one, the HIV infection persists. Further more, sufficient conditions are derived for the global stability of the chronic-infection equilibrium. At last, numerical simulations are carried out to illustrate the main result.
出处 《生物数学学报》 2013年第4期635-642,共8页 Journal of Biomathematics
基金 国家自然科学基金资助项目(11071254) 河北省自然科学基金(A2009001426)
关键词 HIV感染 CD4+T细胞 标准发生率 HIV infection CD4+T cell Standard incidence function
  • 引文网络
  • 相关文献

参考文献9

  • 1Perelson A S~ Kirschner D E, de Boer R. Dynamics of HIV infection of CD+4T cells[J]. Mathematical Biosciences~ 1993~ 114(1):81-125.
  • 2陈美玲,朱惠延.具免疫时滞的HIV感染模型动力学性质分析[J].生物数学学报,2009,24(4):624-634. 被引量:13
  • 3王会兰,朱惠延,王礼广,许友军.具饱和CTL免疫反应的时滞HIV感染系统稳定性分析[J].生物数学学报,2012,27(2):274-282. 被引量:9
  • 4Wang L, Li M Y. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T cells[J]. Mathematical Biosciences, 2006, 200(1):44-57.
  • 5Freedman H I, Tang M X, Ruan S G. Uniform persistence and flows near a closed positively invariant set[J]. Journal of Dynamics Differenial Equations, 1994, 6(4):583-600.
  • 6Li M Y, Graef J R, Wang L, et al. Global dynamics of a SEIR model with a varying total population size[J]. Mathematical Biosciences, 1999, 160(2):191-213.
  • 7Li M Y, Muldowney J S. A geometric approach to the global-stability problems[J]. SIAM Journal on Math- ematical Analysis, 1996, 27(4):1070-1083.
  • 8R.H. Martin Jr. Logarithmic norms and projections applied to linear differential systems[J]. Journal of Mathematical Analysis and Applications, 1974, 45(2):432-454.
  • 9Coppel W A. Stability and Asymptotic Behavior of Differential Equations[M]. Boston: Heath, 1965.

二级参考文献18

  • 1闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 2李大潜.非终身免疫型传染病动力学的偏微模型[J].生物数学学报,1986,(1):29-36.
  • 3马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 4Perelson A S, Nelson P W. Mathematical analysis of HIV-1 Dynamics in vivo[J]. SIAM Review, 1999, 41(1):3-44.
  • 5Levy.艾滋病病毒与艾滋病的发病机制[M].北京:科学出版社,2000.
  • 6Kaifa Wang, Wendi Wang, Haiyan Pang, et al. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica, 2007, D(226):197-208.
  • 7Martin Nomak A, Robert M. May, virus dynamics[M]. New York: OxfordUniversity Press, 2000.
  • 8Buric N, Mudrinic M, Vasovi N. Time delay in a basic model of the immune response[J]. Chaos, Solitons and Fractals, 2001, 12, 483-489.
  • 9Sandor Kovacs. Dynamics of an HIV/AIDS model-The effect of time delay[J]. Applied Mathematics and Computation, 2007, 188, 1597-1609.
  • 10Patrick Nelson W, Alan S. Perelson,Mathematical Analysis of delay differential equation model of HIV-1 infection[J]. Mathematical Biosciences, 2002, 179, 73-94.

共引文献20

;
使用帮助 返回顶部