期刊文献+

基于加权近邻保持嵌入的高光谱数据降维方法 被引量:7

Dimensionality reduction for hyperspectral data using weighted neighborhood preserving embedding
原文传递
导出
摘要 为降低高光谱数据的信息冗余以提高其分类精度,采用加权距离度量测度来衡量样本间的相似度并进而选择近邻样本,提出一种加权近邻保持嵌入数据降维(WNPE)算法.加权距离的主要思想为根据数据点附近样本点的分布来自适应地决定距离函数,由此可以避免基于标准欧氏距离的近邻选择方法产生的数据冗余现象,从而更好地提取信息量大的光谱波段.CUPRITE矿区高光谱数据上的实验结果表明,与目前具有代表性的稀疏降维和基于流形学习的降维算法对比,WNPE能够有效提高高光谱数据的分类总精度和Kappa系数,分别达到了90.97%和0.878 6. In order to reduce the information redundancy and thus to improve the classification accuracy of hyperspectral data, a weighted distance metric was used to measure the similarity between samples and thus neighbor samples was selected. Based on the weighted distance met- ric, a dimensionality reduction algorithm called weighted neighborhood preserving embedding (WNPE) was proposed. The main idea of the weighted distance is to adaptively determine the distance function according to the distribution of the near samples. Therefore, the weighted distance-based neighbor-selection can avoid the data redundancy resulted from standard Euclid- ean distance, which is beneficial for the extraction of spectral bands containing large amount of information. Experimental results on CUPRITE hyperspectral data show that WNPE can effec- tively improve the overall classification accuracy and Kappa coefficient of hyperspectral data, which are 90.97% and 0. 8786 respectively, in contrast to present typical dimensionality reduc- tion algorithms based on sparisty representation or manifold learning.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2013年第6期1066-1072,共7页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(61072094)
关键词 加权距离 近邻保持嵌入 高光谱数据 降维 weighted distance neighborhood preserving embedding hyperspectral data di-mensionality reduction
  • 相关文献

参考文献14

  • 1陈绍杰,李光丽,张伟,曹文.基于多分类器集成的煤矿区土地利用遥感分类[J].中国矿业大学学报,2011,40(2):273-278. 被引量:10
  • 2FATIMA S N,ABBASI N A. Distributive segmented PCA:a novel approach to hyperspectral image compression[A].Piscataway:IEEE Inc,2012.2098-2102.
  • 3LIAO W Z,PIZURICA A,SCHEUNDERS P. Semisupervised local discriminant analysis for feature extraction in hyperspectral images[J].Geoscience and Remote Sensing,2013,(01):184-198.
  • 4DALLA M M,VILLA A,BENEDIKTSSON J A. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis[J].IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2011,(03):542-546.
  • 5罗琴,田铮,赵志祥.Shrinkage-divergence-proximity locally linear embedding algorithm for dimensionality reduction of hyperspectral image[J].Chinese Optics Letters,2008,6(8):558-560. 被引量:5
  • 6VELASCO-FORERO S,ANGULO J,CHANUSSOT J. Morphological image distances for hyperspectral dimensionality exploration using Kernel-PCA and ISOMAP[A].Piscataway:IEEE Inc,2009.109-112.
  • 7石茜,杜博,张良培.一种基于局部判别正切空间排列的高光谱遥感影像降维方法[J].测绘学报,2012,41(3):417-420. 被引量:8
  • 8SHANG T T,JIA Y C,WEN Y,HONG S. Laplacian Eigenmaps-based polarimetric dimensionality reduction for SAR image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2012,(01):170-179.
  • 9BENGIO Y,PAIEMENT J F,VINCENT P. Out-ofsample extensions for LLE,isomap,MDS,eigenmaps,and spectral clustering[A].Cambridge.MA:MIT Press,2003.184-191.
  • 10CHEN Y W,HAN X H. Classification of high-resolution satellite images using supervised locality preserving projections[J].Lecture Notes in Computer Science,2008,(01):149-156.

二级参考文献63

  • 1张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:73
  • 2柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563. 被引量:59
  • 3韩建峰,杨哲海.组合分类器及其在高光谱影像分类中的应用[J].测绘科学技术学报,2007,24(3):231-234. 被引量:9
  • 4赵书河,李培军,冯学智.遥感影像决策级融合方法实验研究[J].测绘科学技术学报,2007,24(4):247-250. 被引量:9
  • 5CHATZIS V, BORS A G, PITAS I. Multimodal decision-level fusion for person authentication[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1999,29 (6) : 674-680.
  • 6STEELE B M. Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping[J]. Remote Sensing of Environment, 2000,74 (3) : 545-556.
  • 7BENEDIKTSSON J A, CHANUSSOT J, FAUVEL M. Multiple classifiers system in remote sensing:from basics to recent developments [C]//HAINDL M, KITTLER J, ROLl F. Proceedings of 7^th International Workshop on Multiple Classifier Systems (MCS). Prague, Czech Republic: Lecture Notes in Computer Science 4472, 2007 : 501-512.
  • 8BREIMAN L. Bagging predictors [J]. Machine Learning, 1996,24(2) : 123-140.
  • 9FREUND Y. Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995, 121 (2) : 256-285.
  • 10CANUTO A M P, ABREU M C C, OLIVEIRA L D M, et al. Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles[J]. Pattern Recognition Letters, 2007,28: 472-486.

共引文献21

同被引文献50

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部