期刊文献+

一种基于时空兴趣点和光流法的行人检测方法 被引量:2

A Personal Detection Method Based on Spatio-temporal Interest Points and the Optical Flow Method
下载PDF
导出
摘要 为解决视频监控系统中帧差光流法在光照变化大时对目标检测存在误差大的问题,提出一种基于时空兴趣点的目标检测算法。从光流的行人目标提取着手,首先对图像序列进行高斯滤波、Gabor滤波,提取到兴趣点集,然后对兴趣点集提取运动目标区域,接着在一定区域进行光流计算,识别并跟踪目标。实验结果表明,该方法的准确率比传统的帧差光流法的准确率高,且在简单的实际场景中更有效。 Big deviation will be generated by using frame-differential optical flow method on target detection. In order to solve the problem, this paper proposes a spatio-temporal interest point target detection algorithm. The authors extract optical flow from a pedestri- an target, apply the method based on spatio-temporal interest point first, and for image sequences Gauss filter and Gabor filter are used to extract interest points set, then the moving objects are extracted from the interest point set, and the optical flow is calculated in a certain area so that the targets are identified and tracked. The experimental results show that the accuracy of this method is higher than that of traditional frame differential optical flow one and the method is relatively simple and effective for actual scenes.
作者 王明辉 余强
出处 《西华大学学报(自然科学版)》 CAS 2014年第1期65-68,共4页 Journal of Xihua University:Natural Science Edition
基金 四川省教育厅科研项目(10226206)
关键词 行人检测 光流计算 时空兴趣点 pedestrian detection optical flow calculation spatio-temporal interest point
  • 相关文献

参考文献3

二级参考文献9

  • 1徐正光,鲍东来,张利欣.基于递归的二值图像连通域像素标记算法[J].计算机工程,2006,32(24):186-188. 被引量:71
  • 2Kim K, Chalidabhongse T H, Harwood D, et al. Real-time Foreground-background Segmentation Using Codebook Model[J]. Real-time Imaging, 2005, 11 (3): 172-185.
  • 3Ellis T. Performance Metrics and Methods for Tracking in Surveillance[C]//Proc. of the 3rd IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Copenhagen, Denmark: IEEE Press, 2002: 26-31.
  • 4Wren C, Azabayejani A, Darrel T, et al. Pfinder: Real-time Tracking of the Human Body[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785.
  • 5Stauffer C, Grimson W. Adaptive Background Mixture Models for Real-time Tracking[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. [S. l.]: IEEE Press, 1999.
  • 6Andrés Bruhn,Joachim Weickert,Christoph Schn?rr. Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods[J] 2005,International Journal of Computer Vision(3):211~231
  • 7David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J] 2004,International Journal of Computer Vision(2):91~110
  • 8李广伦,殳伟群.视频监控系统中运动目标的实时检测[J].计算机工程,2009,35(17):217-218. 被引量:18
  • 9GONG JianYa,SUI HaiGang,SUN KaiMin,MA GuoRui & LIU JunYi State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430072,China.Object-level change detection based on full-scale image segmentation and its application to Wenchuan Earthquake[J].Science China(Technological Sciences),2008,51(S2):110-122. 被引量:7

共引文献28

同被引文献18

  • 1陈白帆,蔡自兴.基于尺度空间理论的Harris角点检测[J].中南大学学报(自然科学版),2005,36(5):751-754. 被引量:79
  • 2Harris C, Stephens M. A Combined Comer and Edge Detector [C]// Proeeedings of the 4th Alvey Vision Conference. [S. 1. ]:[s. n. ] , 1988:147 - 151.
  • 3SCH MID C, M OH R R, BAUCKH AGE C. Evaluation of In- terest Point Detectot [ J ]. International Journal of Computer Vision, 2000, 37(2) : 151 -172.
  • 4Shi F, Huang X, Duan Y. Robust Harris-Laplace Detector by Scale Multiplication[ J ]. Advances in Visual Computing, Lecture Notes in Computer Science. 2009, 5875:265 - 274.
  • 5Mikolajezyk K, Schmid C. Scale & Aft'ine lnvariant Interest Point Detectors[ J]. International Journal of Computer Vision, 2004, 60 (1): 63 -86.
  • 6Raja J, Muralikr ishnan B, Fu Shengyu. Recent Advances in Separalion of Roug Hness, Waviness and Form [ J]. Precision Engineer- ing,2002, 26(2) : 222-235.
  • 7Gueguen L , Soille P , Pesaresi M. Differential Morphological Decomposition Segmentation: A muhi-scale Object Based Image Deserip- don [ C ]//20th International Conferenee on Pattern Recognition (ICPR). [S.1.]:[s.n ] ,2010:938-941.
  • 8程邦胜,唐孝威.Harris尺度不变性关键点检测子的研究[J].浙江大学学报(工学版),2009,43(5):855-859. 被引量:23
  • 9刘志敏,杨杰.基于数学形态学的图像形态滤波[J].红外与激光工程,1999,28(4):10-15. 被引量:36
  • 10白向峰,李艾华,李喜来,李仁兵.新型背景混合高斯模型[J].中国图象图形学报,2011,16(6):983-988. 被引量:29

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部