摘要
研究以下双调和非线性椭圆方程:{Δ2 u+V(x)u=f(x,u)于RN,u∈H2(RN).其中V(x)是具有正下界的连续周期函数,非线性项f(x,u)∈C1,F(x,u)∶=∫u0f(x,s)ds具有超线性增长(但不一定满足AR条件),主要用极小化方法证明上述方程的基态解的存在性.该结果是文献[3]中半线性椭圆方程的结果在双调和型方程中的推广.
We considered the following equation△^2u+V(x)u=f(x,u)于R^N,u∈H^2(R^N).where V was a positive continuous periodic function, the nonlinearityf(x,u)∈C^1,F(x,u):= f(x,s)dssatisfied super-quadratic condition but without (AR) condition. We proved the existence of ground-state solution for the above equation. Our result generalized a similar result in reference[3] to biharmonic type problem.
出处
《湖北大学学报(自然科学版)》
CAS
2014年第1期35-40,共6页
Journal of Hubei University:Natural Science