期刊文献+

一类双调和方程基态解的存在性 被引量:1

The existence of ground-state solutions to a class of biharmonic elliptic equations
下载PDF
导出
摘要 研究以下双调和非线性椭圆方程:{Δ2 u+V(x)u=f(x,u)于RN,u∈H2(RN).其中V(x)是具有正下界的连续周期函数,非线性项f(x,u)∈C1,F(x,u)∶=∫u0f(x,s)ds具有超线性增长(但不一定满足AR条件),主要用极小化方法证明上述方程的基态解的存在性.该结果是文献[3]中半线性椭圆方程的结果在双调和型方程中的推广. We considered the following equation△^2u+V(x)u=f(x,u)于R^N,u∈H^2(R^N).where V was a positive continuous periodic function, the nonlinearityf(x,u)∈C^1,F(x,u):= f(x,s)dssatisfied super-quadratic condition but without (AR) condition. We proved the existence of ground-state solution for the above equation. Our result generalized a similar result in reference[3] to biharmonic type problem.
作者 杨玉蓓
出处 《湖北大学学报(自然科学版)》 CAS 2014年第1期35-40,共6页 Journal of Hubei University:Natural Science
关键词 双调和方程 NEHARI流形 基态解 biharmonic Nehari manifold ground-state solution
  • 相关文献

参考文献7

  • 1Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[J]. J Funct Anal,1973,14:349-381.
  • 2Liu Z,Wang Z Q. On the Ambrosetti-Rabinowitz superlinear condition[J]. Adv Nonlinear Stud,2004(4) :561-572.
  • 3Li Y Q, Wang Z Q, Zeng J. Ground states of nonlinear Schrodinger equations with potentials [J]. Ann Inst HPoincare Anal Non Lineaire,2006,23 :829-837.
  • 4Willem M. Minimax theorems[M]. Boston: Birkhauser,1997:73.
  • 5Lions P L. The concentration-compactness principle in the calculus of variations: the locally compact case: part 2[J].Ann Inst H Poincare Anal Non Lineaire, 1984(2) :223-283.
  • 6Rabinowitz P H. On a class of nonlinear Schrodinger equations[J], Z Angew Math Phys, 1992,43:270-291.
  • 7Lions P L. The concentration-compactness principle in the calculus of variations: the locally compact case: part 1[J].Ann Inst H Poincare Anal Non Lineaire ,1984(2) : 109-145.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部