期刊文献+

Stirling数模2方幂的同余式(英文) 被引量:1

Congruences for Stirling numbers modulo a power of 2
原文传递
导出
摘要 设a,c,k,n,m为正整数,m3且S(n,k)为第二类Stirling数.在本文中,作者分别建立了S(n,a2m-1)和S(n,a2m-2)模2m的同余式,其表达式均由二项式系数组成.进一步地,作者得到了S(c2m,2m-2)模2m的简化结果. Let a ,c ,k ,n and m ≥3 be positive integers and S(n ,k) be the Stirling numbers of the second kind .In this paper ,the author establishes congruences for S(n ,a2m -1) and S(n ,a2m -2) modulo 2m in terms of binomial coefficients ,respectively .Moreover ,the author obtains explicit reductions of S(c2m , 2m -2) modulo 2m .
作者 赵建容
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期1191-1194,共4页 Journal of Sichuan University(Natural Science Edition)
基金 西南财经大学211工程三期青年教师成长项目(211QN2011037)
关键词 第二类STIRLING数 同余式 二项式系数 Stirling number of the second kind, congruence, binomial coefficient
  • 相关文献

参考文献7

  • 1Amdeberhan T, Manna D, Moll V. The 2-adic valu- ation of Stirling numbers[J]. Experimental Math, 2008, 17: 69.
  • 2Carlitz L. Congruences for generalized Bell and Stifling numbers[J], Duke Math J, 1955, 22: 193.
  • 3Chan O, Manna D. Congruences for Stirling numbers of the second kind[J]. Contemporary Math, 2010, 517: 97.
  • 4Davis D, Potocka K. 2-primary vl -periodic homotopy groups of SU(n) revisited[J]. Forum Math, 2007, 19: 783.
  • 5Hong S, Zhao J, Zhao W. The 2-adic valuations of Stirling numbers of the second kind[J]. International J Number Theory, 2012, 8: 1057.
  • 6Lengyel T. On the 2-adic order of Stifling numbers of the second kind and their differences[J]. DMTCS Proc. AK, 2009: 561.
  • 7Zhao J. The 2-adic valuation of a kind of Stifling number [J]. J Sichuan University: Nat Sci Ed, 2011: 48: 745.

同被引文献8

  • 1孙琦,袁平之.有关幂数的几个问题[J].四川大学学报(自然科学版),1989,26(3):277-282. 被引量:1
  • 2Borwein P, Erdelyi T. Polynomials and polynomial inequalities [ M ]. New York/Berlin.. Springer, 1995.
  • 3Nathanson M B. Elementary methods in number theory [M]. Berlin/New York: Springer-Verlag, 2003.
  • 4Amdeberhan T, Medina L. A, Moll V. H. Arith- metical properties of a sequence arising from an arct- angent sum [J]. J Number Thoery, 2008, 1807: 1846.
  • 5Cilleruelo J. Squares in (1^2 + 1)(2^2 + 2)…(n^2 +1) [J]. J Number Thoery, 2008, 2488: 2491.
  • 6Hardy G, Wright E. An introduction to the theory of number [M]. Oxford: Oxford University Press, 1980.
  • 7Hong S, Liu X. Squares in (2^2 - 1)...(n^2 - 1) and p- adicvaluation [J]. Asian-Eur J Math, 2010, 3 (2) : 329.
  • 8Yang S, Togbe A. Diophantine equations with prod- ucts of consecutive values of a quadratic polynomial [J]. J Number Theory, 2011, 131: 1840.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部