期刊文献+

32个三硝基芳香族炸药分子的原子化能与其撞击感度的关系研究(英文) 被引量:4

Relationship of the atomization energy and impact sensitivity of thirty-two trinitro-aromatic-explosives
原文传递
导出
摘要 本文用密度泛函理论计算了32个三硝基芳香族炸药分子的原子化能Ae和其原子化能与分子结构能的比值Ae/E,并将理论计算值与对应炸药的撞击感度实验数值进行相关性分析,发现原子化能与撞击感度实验数值之间不存在相关性联系,而原子化能与分子结构能的比值与撞击感度实验值的对数值之间存在明显的线性相关性.这32个分子几乎包括了所有中小型尺寸的三硝基芳香族炸药分子,它们具有非常相似的化学结构,分析发现撞击感度与分子的原子化能与分子结构能的比值之间的关联程度与分子的结构活性有很大关系.本文将这32个分子按照苯环上是否含有α-CH分成两类,结果显示不含α-CH的那一组分子的撞击感度与分子的原子化能与分子结构能的比值之间的关联性非常好.而苯环上链接α-CH的一组炸药分子的撞击感度与分子的原子化能与分子结构能的比值之间存在着统计意义上的关联关系(P=0.0208<0.05),但不是期望值.基于分析得到的关联方程式,本文也对8个分子的撞击感度实验值进行了预测,这8个分子未在与本文分析的其他炸药分子同等的物理化学条件下得到撞击感度实验值. A calculation of the atomization energy (Ae ) and the ratio of the atomization energy to the to-tal molecular energy Ae /E for trinitro-aromatic explosive molecules using density functional theory indi-cates that there is a nearly linear correlation between the impact sensitivity and the ratio of the atomiza-tion energy to the total molecular energy Ae /E of explosive molecules .A calculation in 32 molecules w hich have similar structure and almost include all of small and middle size trinitro-aromatic-explosives molecules shows that the correlation between the ratio of the atomization energy to the total molecular energy (Ae /E) and the impact sensitivity depends on the structure and activity of the molecules .For more clearer investigation of the relationship we have classified these 32 trinitro-aromatic explosive mole-cules into two groups according to whether it contains α-CH .It is found that there is a linear correlation between the values of Logh50% and the ratio of the atomization energy to the molecular total energy (Ae /E) in the group of compounds that does not containα-CH ,and this relationship is excellent .The rela-tion between the values of Logh50% and the ratio of the atomization energy to the molecular total energy (Ae /E) in the group of compounds that containsα-CH just exists ,and it reaches statistical significance (P=0 .0208〈0 .05) .Based on the equation of the correlation we predict the impact sensitivities of eight explosive molecules in this paper .
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期1289-1298,共10页 Journal of Sichuan University(Natural Science Edition)
基金 河西学院校长基金(200909) 国家自然科学基金(41171175)
关键词 密度泛函 原子化能 三硝基芳香族炸药 撞击感度 分子结构 density functional theory, atomization energy, trinitro-aromatic molecule, impact sensitivi-ty, molecular structure
  • 相关文献

参考文献28

  • 1Zeman S. Sensitivities of high energy compounds[J]. Strucct Bond, 2007, 125: 195.
  • 2Badgujar D M, Talawar M B, Asthana S N, et al. Advances in science and technology of modern ener- getic materials: An overview[J]. J Hazardous Mat, 2008, 515: 289.
  • 3Mcnesby K L, Coffey C S. Spectroscopic determina- tion of impact sensitivities of exp]osives[J]. J Phys Chem B, 1997, 101: 3097.
  • 4Bulusu S N. (Ed.) Chemistry and physics of ener- getic materials[M]. Murray J S, Politzer P. Struc- ture-Sensitivity Relationships in Energetic Corn-pounds, Netherlands: Kluwer Academic Publishers, 1990.
  • 5Bulusu S N. (Ed.) Chemistry and physics of ener- getic materials[M]. Storm C B, Stine J R, Kramer J F. Sensitivity Relationships in Energetic Materials, Netherlands: Kluwer Academic Publishers, 1990.
  • 6Li Q M, Song X S, Zhou X, et al. Be-composition effect on structure,四川大学学报:自然科学版,2012,49(5):65.
  • 7XuSW,ChengXL,FengSQ,eta1.QuantummontecarlostudyontheenergiesofA1NandLiClmolecules[J].四川大学学报:自然科学版,2012,49(4):99.
  • 8Guo Y D, Yang Z J, Li D H. Theoretical studies of the elastic and thermodynamic pro-perties for sodium hydride under high presurel-J].四川大学学报:自然科学版,2011,48(5):239.
  • 9刘一丁,唐永建.关于ErH_2弹性性质及热力学性质的第一性原理研究[J].四川大学学报(自然科学版),2011,48(3):635-640. 被引量:2
  • 10Owens F J. Calculation of energy barriers for bond rupture in some energetic molecules[J]. Theochem, 1996, 370:11.

二级参考文献19

  • 1Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue forrnalism[J].Phys Rev B,1990,41:7892.
  • 2Segall M D,Lindan P J D,Probert M J,et al.Firstprinciples simulation:ideas,illustrations and the CASTEP code[J].J Phys:Condens Matter,2002,14:2717.
  • 3Wu Z,Cohen R E.More accurate generalized gradient approximation for solids[J].Phys Rev B,2006,73:235116.
  • 4Gupta M.Electronic structure of ErH2[J].Solid State Commun,1978,27:1355.
  • 5Singh B,Surplice N A,Jaroslav M.An electrical resistance analysis of the erbium-hydrogen system[J].J Phys D:Appl Phys,1976,9:2087.
  • 6Vajda P,Daou J N.Magnetic and metal-semiconductor transitions in ordered and disordered ErH(D)2+x[J].Phys Rev B,1994,49:3275.
  • 7Parish C M,Snow C S,Brewer L N.High-resolution characterization of oxygen incorporation in erbium dihydride thin films[J].Microsc Microanal,2008,14 (Suppl.2):648.
  • 8Wixom R R,Browning J F,Snow C S,et al.First principles site occupation and migration of hydrogen,helium,and oxygen in-phase erbium hydride[J].J Appl Phys,2008,103:123708-1.
  • 9Palasyuka T,Tkacz M.Pressure induced hexagonal to cubic phase transformation in erbium trihydride[J].Solid State Commun,2004,130:219.
  • 10Palasyuka T,Tkacza M,Vajda P.High pressure studies of the erbium-hydrogen system[J].Solid State Commun,2005,135:226.

共引文献1

同被引文献51

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部